The use of compliant layer prosthetic components in orthopedic joint repair and replacement: A review
Corresponding Author
Kenneth R. St. John
Department of Biomedical Materials Science, University of Mississippi Medical Center, Jackson, Mississippi, 39216
Correspondence to: K. R. St. John (e-mail: [email protected])Search for more papers by this authorCorresponding Author
Kenneth R. St. John
Department of Biomedical Materials Science, University of Mississippi Medical Center, Jackson, Mississippi, 39216
Correspondence to: K. R. St. John (e-mail: [email protected])Search for more papers by this authorAbstract
The surgical repair or treatment of degenerative joint disease has traditionally involved the substitution of synthetic materials for one or both surfaces of the joint. Engineering thermoplastics, metals, and ceramics have either been widely accepted or experimentally evaluated for use as bearing surfaces in these prostheses. When engineering thermoplastics are used, the opposing surface is a metal or a ceramic, but metal-on-metal, metal-on-ceramic, and ceramic-on-ceramic have also been used or tested. Researchers have sought the opportunity to utilize materials with compressive mechanical properties more closely matching those of the natural articular cartilage. This review discusses the theory, testing, and application of elastomers for one bearing component of articular joint prostheses. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 1332–1341, 2014.
REFERENCES
- 1 Sonntag R, Reinders J, Kretzer JP. What's next? Alternative materials for articulation in total joint replacement. Acta Biomater 2012; 8(7): 2434–2441.
- 2 Dowson D. New joints for the millennium: Wear control in total replacement hip joints. Proc Inst Mech Eng [H] 2001; 215(4): 335–358.
- 3 Synovial joints. In: S Standring, NR Borley, P Collins, AR Crossman, JC Healy, D Johnson, V Mahadevan, RLM Newell, CB Wigley, editors. Gray's Anatomy: The Anatomical Basis of Clinical Practice, 40th ed. London: Churchill Livingstone; 2008. p 120.
- 4 Dowson D, Jin ZM. A full numerical solution to the problem of microelastohydrodynamic lubrication of a stationary compliant wavy layered surface firmly bonded to a rigid substrate with particular reference to human synovial joints. Proc Inst Mech Eng [H] 1992; 206(4): 185–193.
- 5 Dowson D, Jin ZM. Microelastohydrodynamic lubrication of low elastic modulus solids on rigid substrates. J Phys [D] 1992; 25(1A): A116–123.
- 6 Unsworth A. Tribology of human and artificial joints. Proc Inst Mech Eng [H] 1991; 205(3): 163–172.
- 7 Unsworth A, Dowson D, Wright V. Some new evidence on human joint lubrication. Ann Rheum Dis 1975; 34(4): 277–285.
- 8 Hlaváček M. Lubrication of the human ankle joint in walking with the synovial fluid filtrated by the cartilage with the surface zone worn out: Steady pure sliding motion. J Biomech 1999; 32(10): 1059–1069.
- 9 Zdrahala RJ, Zdrahala IJ. Biomedical applications of polyurethanes: A review of past promises, present realities, and a vibrant future. J Biomater Appl 1999; 14(1): 67–90.
- 10 Gogolewski S. Selected topics in biomedical polyurethanes. A review. Colloid Polym Sci 1989; 267(9): 757–785.
- 11 Coury AJ, Slaikeu PC, Cahalan PT, Stokes KB, Hobot CM. Factors and interactions affecting the performance of polyurethane elastomers in medical devices. J Biomater Appl 1988; 3(2): 130–179.
- 12 Phillips RE, Smith MC, Thoma RJ. Biomedical applications of polyurethanes: Implications of failure mechanisms. J Biomater Appl 1988; 3(2): 207–227.
- 13 Stokes K, McVenes R, Anderson JM. Polyurethane elastomer biostability. J Biomater Appl 1995; 9(4): 321–354.
- 14 Stokes KB. Polyether polyurethanes: Biostable or not? J Biomater Appl 1988; 3(2): 228–259.
- 15 Szycher M. Biostability of polyurethane elastomers: A critical review. J Biomater Appl 1988; 3(2): 297–402.
- 16 Cauich-Rodriguez JV, Chan-Chan LH, Hernandez-Sanchez F, Cervantes-Uc JM. Degradation of polyurethanes for cardiovascular applications. In: R Pignatello, editor. Advances in Biomaterials Science and Biomedical Applications. Rijeka, Croatia: In Tech; 2013. pp 51–82.
- 17
Bernacca GM,
Mackay TG,
Wilkinson R,
Wheatley DJ. Polyurethane heart valves: Fatigue failure, calcification, and polyurethane structure. J Biomed Mater Res 1997; 34(3): 371–379.
10.1002/(SICI)1097-4636(19970305)34:3<371::AID-JBM12>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 18 Wiggins MJ, Anderson JM, Hiltner A. Effect of strain and strain rate on fatigue-accelerated biodegradation of polyurethane. J Biomed Mater Res 2003; 66(3): 463–475.
- 19
Mathur AB,
Collier TO,
Kao WJ,
Wiggins M,
Schubert MA,
Hiltner A,
Anderson JM. In vivo biocompatibility and biostability of modified polyurethanes. J Biomed Mater Res 1997; 36(2): 246–257.
10.1002/(SICI)1097-4636(199708)36:2<246::AID-JBM14>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 20 Wiggins MJ, MacEwan M, Anderson JM, Hiltner A. Effect of soft-segment chemistry on polyurethane biostability during in vitro fatigue loading. J Biomed Mater Res 2004; 68A(4): 668–683.
- 21 Christenson EM, Dadsetan M, Wiggins M, Anderson JM, Hiltner A. Poly(carbonate urethane) and poly(ether urethane) biodegradation: In vivo studies. J Biomed Mater Res 2004; 69A(3): 407–416.
- 22 Christenson EM, Anderson JM, Hiltner A. Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation: In vivo and in vitro correlations. J Biomed Mater Res 2004; 70A(2): 245–255.
- 23 Labow RS, Sa D, Matheson LA, Santerre JP. Polycarbonate-urethane hard segment type influences esterase substrate specificity for human-macrophage-mediated biodegradation. J Biomater Sci Polym Ed 2005; 16(9): 1167–1177.
- 24 Tang YW, Labow RS, Revenko I, Santerre JP. Influence of surface morphology and chemistry on the enzyme catalyzed biodegradation of polycarbonate-urethanes. J Biomater Sci Polym Ed 2002; 13(4): 463–483.
- 25 Pinchuk LM (FL); Corvita Corporation (Miami, FL), assignee. Crack-resistant polycarbonate urethane polymer prostheses. US patent 5,133,742; 1992.
- 26 Szycher M, Reed AM, Siciliano AA. In vivo testing of a biostable polyurethane. J Biomater Appl 1991; 6: 110–130.
- 27 Yang M, Zhang Z, Hahn C, Laroche G, King MW, Guidoin R. Totally implantable artificial hearts and left ventricular assist devices: Selecting impermeable polycarbonate urethane to manufacture ventricles. J Biomed Mater Res 1999; 48(1): 13–23.
- 28 Tanzi MC, Farè S, Petrini P. In vitro stability of polyether and polycarbonate urethanes. J Biomater Appl 2000; 14(4): 325–348.
- 29
Tanzi MC,
Mantovani D,
Petrini P,
Guidoin R,
Laroche G. Chemical stability of polyether urethanes versus polycarbonate urethanes. J Biomed Mater Res 1997; 36(4): 550–559.
10.1002/(SICI)1097-4636(19970915)36:4<550::AID-JBM14>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 30 Kurtz SM, Siskey R, Reitman M. Accelerated aging, natural aging, and small punch testing of gamma-air sterilized polycarbonate urethane acetabular components. J Biomed Mater Res 2010; 93(2): 442–447.
- 31 Smith RA, Hallab NJ. In vitro macrophage response to polyethylene and polycarbonate-urethane particles. J Biomed Mater Res 2010; 93A(1): 347–355.
- 32 Smith RA, Maghsoodpour A, Hallab NJ. In vivo response to cross-linked polyethylene and polycarbonate-urethane particles. J Biomed Mater Res 2010; 93A(1): 227–234.
- 33 Hosseinzadeh HRS, Eajazi A, Shahi AS. The bearing surfaces in total hip arthroplasty—options, material characteristics and selection. In: S Fokter, editor. Recent Advances in Arthroplasty. Rijeka, Croatia: In Tech; 2012. pp 163–210.
- 34 Dowson D, Fisher J, Jin ZM, Auger DD, Jobbins B. Design considerations for cushion form bearings in artificial hip joints. Proc Inst Mech Eng [H] 1991; 205(2): 59–68.
- 35 Jin ZM, Dowson D, Fisher J. Stress analysis of cushion form bearings for total hip replacements. Proc Inst Mech Eng [H] 1991; 205(4): 219–226.
- 36 O'Carroll S, Jin ZM, Dowson D, Fisher J, Jobbins B. Determination of contact area in ‘cushion form' bearings for artificial hip joints. Proc Inst Mech Eng [H] 1990; 204(4): 217–223.
- 37 McClure G, Jin ZM, Fisher J, Tighe BJ. Determination of lubricating film thickness for permeable hydrogel and non-permeable polyurethane layers bonded to a rigid substrate with particular reference to cushion form hip joint replacements. Proc Inst Mech Eng [H] 1996; 210(2): 89–93.
- 38 Stewart T, Jin ZM, Fisher J. Friction of composite cushion bearings for total knee joint replacements under adverse lubrication conditions. Proc Inst Mech Eng [H] 1997; 211(6): 451–465.
- 39 Stewart T, Jin ZM, Fisher J. Analysis of contact mechanics for composite cushion knee joint replacements. Proc Inst Mech Eng [H] 1998; 212(1): 1–10.
- 40 Unsworth A, Strozzi A. Axisymmetric finite element analysis of hip replacements possessing an elastomeric layer: The effects of clearance and poisson's ratio. Proc Inst Mech Eng [H] 1995; 209(1): 59–64; discussion 71–72.
- 41 Strozzi A. Analytical modelling of the elastomeric layer in soft layer hip replacements. Proc Inst Mech Eng [H] 2000; 214(1): 69–81.
- 42 Jin ZM. Elastohydrodynamic lubrication of a circular point contact for a compliant layered surface bonded to a rigid substrate. Part 1: Theoretical formulation and numerical method. Proc Inst Mech Eng [J] 2000; 214(3): 267–279.
- 43 Jin ZM. Elastohydrodynamic lubrication of a circular point contact for a compliant layered surface bonded to a rigid substrate. Part 2: Numerical results. Proc Inst Mech Eng [J] 2000; 214(3): 281–289.
- 44 Jin ZM, Dowson D, Fisher J, Ohtsuki N, Murakami T, Higaki H, Moriyama S. Prediction of transient lubricating film thickness in knee prostheses with compliant layers. Proc Inst Mech Eng [H] 1998; 212(3): 157–164.
- 45 Virdee SS, Wang FC, Xu H, Jin ZM. Elastohydrodynamic lubrication analysis of a functionally graded layered bearing surface, with particular reference to 'cushion form bearings' for artificial knee joints. Proc Inst Mech Eng [H] 2003; 217(3): 191–198.
- 46 Wang F, Liu F, Jin Z. A general elastohydrodynamic lubrication analysis of artificial hip joints employing a compliant layered socket under steady state rotation. Proc Inst Mech Eng [H] 2004; 218(5): 283–291.
- 47 Elsner JJ, Portnoy S, Zur G, Guilak F, Shterling A, Linder-Ganz E. Design of a free-floating polycarbonate-urethane meniscal implant using finite element modeling and experimental validation. J Biomech Eng 2010; 132(9): 095001.
- 48
Jin ZM,
Dowson D,
Fisher J,
Rimmer D,
Wilkinson R,
Jobbins B. Measurement of lubricating film thickness in low elastic modulus lined bearings, with particular reference to models of cushion form bearings for total joint replacements. Part 1: Steady state entraining motion. Proc Inst Mech Eng [J] 1994; 208(4): 207–212.
10.1243/PIME_PROC_1994_208_372_02 Google Scholar
- 49
Jin ZM,
McClure G,
Dowson D,
Fisher J,
Jobbins B. Measurement of lubricating film thickness in low elastic modulus lined bearings, with particular reference to models of cushion form bearings for total joint replacements. Part 2: Squeeze-film motion. Proc Inst Mech Eng [J] 1994; 208(4): 213–217.
10.1243/PIME_PROC_1994_208_373_02 Google Scholar
- 50 Auger DD, Medley JB, Fisher J, Dowson D. A preliminary investigation of the 'cushion bearing' concept for joint replacement implants. In: DT Dowson, CM Taylor, M Godet, editors. 16th Leeds-Lyon Symposium on Tribology. Vol. 17. Lyon, France; 1990. pp 251–260.
- 51 Caravia L, Dowson D, Fisher J. Start up and steady state friction of thin polyurethane layers. Wear 1993; 160(1): 191–197.
- 52 Caravia L, Dowson D, Fisher J, Corkhill PH, Tighe BJ. Friction and Mixed Lubrication in Soft Layer Contacts. Tribology Series. Amsterdam: Elsevier; 1993. pp 529–534.
- 53 Caravia L, Dowson D, Fisher J, Corkhill PH, Tighe BJ. A comparison of friction in hydrogel and polyurethane materials for cushion-form joints. J Mater Sci Mater Med 1993; 4(5): 515–520.
- 54 Caravia L, Dowson D, Fisher J, Corkhill PH, Tighe BJ. Friction of hydrogel and polyurethane elastic layers when sliding against each other under a mixed lubrication regime. Wear 1995; 181-183(Part 1): 236–240.
- 55 Auger DD, Dowson D, Fisher J, Jin ZM. Friction and lubrication in cushion form bearings for artificial hip joints. Proc Inst Mech Eng [H] 1993; 207(1): 25–33.
- 56 Auger DD, Dowson D, Fisher J. Cushion form bearings for total knee joint replacement. Part 1: Design, friction and lubrication. Proc Inst Mech Eng [H] 1995; 209(2): 73–81.
- 57 Luo Y, McCann L, Ingham E, Jin ZM, Ge S, Fisher J. Polyurethane as a potential knee hemiarthroplasty biomaterial: An in-vitro simulation of its tribological performance. Proc Inst Mech Eng [H] 2010; 224(3): 415–425.
- 58 Ash HE, Scholes SC, Unsworth A, Jones E. The effect of bone cement particles on the friction of polyethylene and polyurethane knee bearings. Phys Med Biol 2004; 49(15): 3413–3425.
- 59 Scholes SC, Unsworth A, Blamey JM, Burgess IC, Jones E, Smith N. Design aspects of compliant, soft layer bearings for an experimental hip prosthesis. Proc Inst Mech Eng [H] 2005; 219(2): 79–87.
- 60 Jones E, Scholes SC, Unsworth A, Burgess IC. Compliant-layer tibial bearing inserts: Friction testing of different materials and designs for a new generation of prostheses that mimic the natural joint. Proc Inst Mech Eng [H] 2008; 222(8): 1197–208.
- 61 Scholes SC, Burgess IC, Marsden HR, Unsworth A, Jones E, Smith N. Compliant layer acetabular cups: Friction testing of a range of materials and designs for a new generation of prosthesis that mimics the natural joint. Proc Inst Mech Eng [H] 2006; 220(5): 583–596.
- 62 Flannery M, Flanagan S, Jones E, Birkinshaw C. Compliant layer knee bearings: Part I: Friction and lubrication. Wear 2010; 269(5-6): 325–330.
- 63 Khan I, Smith N, Jones E, Finch DS, Cameron RE. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: Materials selection and evaluation. Biomaterials 2005; 26(6): 621–631.
- 64 Jin ZM, Dowson D, Fisher J. Wear and friction of medical grade polyurethane sliding on smooth metal counterfaces. Wear 1993; 162-164(Part 1): 627–630.
- 65 Auger DD, Dowson D, Fisher J. Cushion form bearings for total knee joint replacement. Part 2: Wear and durability. Proc Inst Mech Eng [H] 1995; 209(2): 83–91.
- 66 Bigsby RJ, Auger DD, Jin ZM, Dowson D, Hardaker CS, Fisher J. A comparative tribological study of the wear of composite cushion cups in a physiological hip joint simulator. J Biomech 1998; 31(4): 363–369.
- 67 Smith SL, Ash HE, Unsworth A. A tribological study of UHMWPE acetabular cups and polyurethane compliant layer acetabular cups. J Biomed Mater Res 2000; 53(6): 710–716.
- 68 Scholes SC, Unsworth A, Jones E. Polyurethane unicondylar knee prostheses: Simulator wear tests and lubrication studies. Phys Med Biol 2007; 52(1): 197–212.
- 69 Jones E, Scholes SC, Burgess IC, Ash HE, Unsworth A. Compliant layer bearings in artificial joints. Part 2: Simulator and fatigue testing to assess the durability of the interface between an elastomeric layer and a rigid substrate. Proc Inst Mech Eng [H] 2009; 223(1): 1–13.
- 70 Flannery M, Jones E, Birkinshaw C. Compliant layer knee bearings. Part II: Preliminary wear assessment. Wear 2010; 269(5-6): 331–338.
- 71 Elsner JJ, Mezape Y, Hakshur K, Shemesh M, Linder-Ganz E, Shterling A, Eliaz N. Wear rate evaluation of a novel polycarbonate-urethane cushion form bearing for artificial hip joints. Acta Biomater 2010; 6(12): 4698–4707.
- 72 Elsner JJ, Shemesh M, Mezape Y, Levenshtein M, Hakshur K, Shterling A, Linder-Ganz E, Eliaz N. Long-term evaluation of a compliant cushion form acetabular bearing for hip joint replacement: A 20 million cycles wear simulation. J Orthop Res 2011; 29(12): 1859–1866.
- 73 St. John KR, Gupta M. Evaluation of the wear performance of a polycarbonate-urethane acetabular component in a hip joint simulator and comparison with UHMWPE and cross-linked UHMWPE. J Biomater Appl 2012; 27: 155–165.
- 74 St. John KR. The effect of serum protein concentration on wear rates in a hip simulator. J Biomater Appl 2010; 25(2): 145–159.
- 75 Khan I, Smith N, Jones E, Finch DS, Cameron RE. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part II: In vivo investigation. Biomaterials 2005; 26(6): 633–643.
- 76 Carbone A, Howie DW, McGee M, Field J, Pearcy M, Smith N, Jones E. Aging performance of a compliant layer bearing acetabular prosthesis in an ovine hip arthroplasty model. J Arthroplasty 2006; 21(6): 899–906.
- 77 Zur G, Linder-Ganz E, Elsner JJ, Shani J, Brenner O, Agar G, Hershman EB, Arnoczky SP, Guilak F, Shterling A. Chondroprotective effects of a polycarbonate-urethane meniscal implant: Histopathological results in a sheep model. Knee Surg Sports Traumatol Arthrosc 2011; 19(2): 255–263.
- 78 Steinberg A; Active Implants Corporation, assignee. Cushion-bearing implants for load bearing applications. US patent 7,752,295; 2009.
- 79 Steinberg A; Active Implants Corporation, assignee. Methods, systems, and apparatus for implanting prosthetic devices into cartilage. US patent 7,780,740; 2010.
- 80 Steinberg A; Active Implants Corporation, assignee. Implants. US patent 7,758,653; 2010.
- 81 Steinberg A; Active Implants Corporation, assignee. Knee prosthesis having a deformable articulation surface. US patent 7,803,193; 2010.
- 82 Elsner JJ, Zur G, Shterling A, Weissberg N; Active Implants Corporation, assignee. Manufacturing and material processing for prosthetic devices. US patent 7,611,653; 2009.
- 83 Fox H; Active Implants Corporation, assignee. Meniscus prosthetic device. US patent 8,192,491; 2012.
- 84 Shterling A, Linder-Ganz E, Danino A; Active Implants Corporation, assignee. Tensioned meniscus prosthetic devices and associated methods. US patent 8,016,884; 2011.
- 85 Shterling A, Zur G, Linder-Ganz E, Weissberg N; Active Implants Corporation, assignee. Meniscus prosthetic devices with anti-migration features. US patent 8,361,147; 2013.
- 86 Treatment of sub-capital fractures of hip joint by using tribofitTM acetabular buffer [Internet]. Washington, DC: ClinicalTrials.gov—National Library of Medicine; 2008 [cited 12/19/2013]. Available from http://clinicaltrials.gov/show/NCT00663468.
- 87 Treatment of the medial meniscus with the nusurface® meniscus implant [Internet]. Washington, DC: ClinicalTrials.gov—National Library of Medicine; 2012 [cited 12/19/20132]. Available from http://clinicaltrials.gov/show/NCT01712191.
- 88 Jones TE, Smith NG; Howmedica International, Inc., assignee. Prosthetic bearing element and method of manufacture. US patent 5,879,387; 1999.
- 89 Smith NG; Howmedica International, Inc., assignee. Process for improving the friction rate of soft/compliant polyurethanes. US patent 6,221,108; 2001.
- 90 Storer JA, Field RE, Rushton N; Benoist Girard SAS, assignee. Cementless prosthetic bearing element. US patent 6,758,864; 2004.
- 91 Felt JC, Rydell MA, Buscemi PJ, Arsenyev A, Porter CH; Advanced Bio Surfaces, Inc., assignee. Method and system for mammalian joint resurfacing. US patent 6,652,587; 2003.
- 92 Townley CO, Frisch KC, Sendijarevic A; Polyurethane and so forth containing joints. US patent 6,302,916; 2001.
- 93 Grundei H, Thomas W; Eska Implants Gmbh & Co., assignee. Sliding partners for artificial joint implants. US patent 6,425,921; 2002.
- 94 Wippermann B, Kurtz S, Hallab N, Treharne R. Explantation and analysis of the first retrieved human acetabular cup made of polycarbonate urethane: A case report. J Long Term Eff Med Implants 2008; 18(1): 75–83.
- 95 Siebert WE, Mai S, Kurtz S. Retrieval analysis of a polycarbonate-urethane acetabular cup: A case report. J Long Term Eff Med Implants 2008; 18(1): 69–74.
- 96
Siebert WE,
Mai S,
Moroni A,
Chiarello E,
Giannini S. A two-year prospective and retrospective multi-center study of the tribofit hip system. J Long Term Eff Med Implants 2009; 19(2): 149–155.
10.1615/JLongTermEffMedImplants.v19.i2.60 Google Scholar
- 97 Moroni A, Nocco E, Hoque M, Diremigio E, Buffoli D, Cantu F, Catalani S, Apostoli P. Cushion bearings versus large diameter head metal-on-metal bearings in total hip arthroplasty: A short-term metal ion study. Arch Orthop Trauma Surg 2012; 132(1): 123–129.
- 98 TribofitTM acetabular buffer: Design rationale—Training guide [Internet]. Memphis, TN: Active Implants Corporation; 2008 [cited December 19, 2013]. Available from http://www.jri-ltd.co.uk/pdf/TriboFit.pdf.
- 99 Tribofit hip system receives CE class III certificate [Internet]. Macclesfield, Cheshire, UK: AZoNetwork UK Ltd.; 2009 [cited December 19, 2013]. Available from http://www.news-medical.net/news/20090901/TriboFit-Hip-System-receives-CE-Class-III-Certificate.aspx.
- 100 Active implants: Distribution partners [Internet]. Memphis, TN: Active Implants LLC; 2013 [cited December 19, 2013]. Available from http://www.activeimplants.com/distribution-partners.html.
- 101 Active implants: Clinical study home [Internet]. Memphis, TN: Active Implants LLC; 2013 [cited December 19, 2013]. Available from http://www.activeimplants.com/meniscus-clinical-study.html.
- 102 Geary C, Birkinshaw C, Jones E. Characterisation of bionate polycarbonate polyurethanes for orthopaedic applications. J Mater Sci Mater Med 2008; 19(11): 3355–3363.
- 103 Geary C, Jones E, Fitzpatrick D, Kelly CP, Birkinshaw C. In-vitro evaluation of a polyurethane compliant-layer glenoid for use in shoulder arthroplasty. Proc Inst Mech Eng [H] 2010; 224(4): 551–563.