Biomechanical and antibacterial properties of Tobramycin loaded hydroxyapatite coated fixation pins
Jan Henrik Sörensen
Department of Pharmaceutics and Biopharmaceutics, Christian Albrecht University Kiel, 24118 Kiel, Germany
Search for more papers by this authorMirjam Lilja
Division for Nanotechnology and Functional Materials, The Ångström Laboratory, Uppsala University, 751 21 Uppsala Sweden
Sandvik Coromant Sverige AB, 12680 Stockholm, Sweden
Search for more papers by this authorTorben Christian Sörensen
Stryker Trauma GmbH, 24232 Schönkirchen, Germany
Search for more papers by this authorMaria Åstrand
Sandvik Coromant Sverige AB, 12680 Stockholm, Sweden
Search for more papers by this authorSabine Fuchs
Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
Search for more papers by this authorCorresponding Author
Maria Strømme
Division for Nanotechnology and Functional Materials, The Ångström Laboratory, Uppsala University, 751 21 Uppsala Sweden
Correspondence to: H. Steckel; e-mail: [email protected] or M. Strømme; e-mail: [email protected]Search for more papers by this authorCorresponding Author
Hartwig Steckel
Department of Pharmaceutics and Biopharmaceutics, Christian Albrecht University Kiel, 24118 Kiel, Germany
Correspondence to: H. Steckel; e-mail: [email protected] or M. Strømme; e-mail: [email protected]Search for more papers by this authorJan Henrik Sörensen
Department of Pharmaceutics and Biopharmaceutics, Christian Albrecht University Kiel, 24118 Kiel, Germany
Search for more papers by this authorMirjam Lilja
Division for Nanotechnology and Functional Materials, The Ångström Laboratory, Uppsala University, 751 21 Uppsala Sweden
Sandvik Coromant Sverige AB, 12680 Stockholm, Sweden
Search for more papers by this authorTorben Christian Sörensen
Stryker Trauma GmbH, 24232 Schönkirchen, Germany
Search for more papers by this authorMaria Åstrand
Sandvik Coromant Sverige AB, 12680 Stockholm, Sweden
Search for more papers by this authorSabine Fuchs
Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
Search for more papers by this authorCorresponding Author
Maria Strømme
Division for Nanotechnology and Functional Materials, The Ångström Laboratory, Uppsala University, 751 21 Uppsala Sweden
Correspondence to: H. Steckel; e-mail: [email protected] or M. Strømme; e-mail: [email protected]Search for more papers by this authorCorresponding Author
Hartwig Steckel
Department of Pharmaceutics and Biopharmaceutics, Christian Albrecht University Kiel, 24118 Kiel, Germany
Correspondence to: H. Steckel; e-mail: [email protected] or M. Strømme; e-mail: [email protected]Search for more papers by this authorAbstract
The present study investigates the use of nanoporous, biomimetic hydroxyapatite (HA) coatings deposited on TiO2 coated fixation pins as functional implant surfaces for the local release of Tobramycin in order to prevent bacterial colonization. The impact of HA-coating thickness, coating morphology and biomechanical forces during insertion into synthetic bone on the drug loading and release properties are analyzed. The coatings are shown to exhibit bactericidal effects against Staphylococcus aureus in agar medium for a duration of 6 days after loading by adsorption with Tobramycin for only 5 min at elevated temperature and pressure. Furthermore, high performance liquid chromatography analysis shows a drug release in phosphate buffered saline for 8 days with antibiotic concentration remaining above the minimal inhibitory concentration for S. aureus during the entire release period. Biomechanical insertion tests into synthetic bone and conventional scratch testing demonstrate adhesive strength at the HA/TiO2 interface. Biocompatibility is verified by cell viability tests. Outgrowth endothelial cells, as well as primary osteoblasts, are viable and firmly attached to both HA and TiO2 surfaces. The results presented are encouraging and support the concept of functional HA coatings as local drug delivery vehicles for biomedical applications to treat as well as to prevent post-surgical infections. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 1381–1392, 2014.
REFERENCES
- 1Nablo BJ, Rothrock AR, Schoenfisch MH. Nitric oxide-releasing sol–gels as antibacterial coatings for orthopedic implants. Biomaterials 2005; 26: 917–924.
- 2Masse A, Bruno A, Bosetti M, Biasibetti A, Cannas M, Gallinaro P. Prevention of pin track infection in external fixation with silver coated pins: clinical and microbiological results. J Biomed Mater Res 2000; 53: 600–604.
- 3Bastiani G de, Aldegheri R, Renzi Brivio L. Dynamic axial fixation. A rational alternative for the external fixation of fractures. Int Orthop 1986; 10: 95–99.
10.1007/BF00267748 Google Scholar
- 4Thakur AJ, Patankar J. Open tibial fractures. Treatment by uniplanar external fixation and early bone grafting. J Bone Joint Surg Br 1991; 73: 448–451.
- 5Schrøder H, Christoffersen H, Sørensen TS, Lindequist S. Fractures of the shaft of the tibia treated with Hoffmann external fixation. Arch Orthop Trauma Surg 1986; 105: 28–30.
- 6Green S, Ripley M. Chronic osteomyelitis in pin tracks. J Bone Joint Surg 1984; 66: 1092–1098.
- 7Lord C, Gebhardt M, Tomford W, Minkin H. Infection in bone allografts. Incidence, nature, and treatment. J Bone Joint Surg 1988; 70: 369–376.
- 8Mankin HJ, Doppelt S, Tomford W. Clinical experience with allograft implantation The first ten years. Clin Orthop Relat Res 1983; 174: 69–86.
- 9Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA. Titania nanotubes: A novel platform for drug-eluting coatings for medical implants? Small 2007; 3: 1878–1881.
- 10Castellani C, Lindtner RA, Hausbrandt P, Tschegg E, Stanzl-Tschegg SE, Zanoni G, Beck S, Weinberg AM. Bone–implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. Acta Biomat 2011; 7: 432–440.
- 11Brohede U, Zhao S, Lindberg F, Mihranyan A, Forsgren J, Strømme M, Engqvist H. A novel graded bioactive high adhesion implant coating. Appl Surf Sci 2009; 255: 7723–7728.
- 12Brohede U, Forsgren J, Roos S, Mihranyan A, Engqvist H, Strømme M. Multifunctional implant coatings providing possibilities for fast antibiotics loading with subsequent slow release. J Mater Sci Mater Med 2009; 20: 1859–1867.
- 13Forsgren J, Brohede U, Piskounova S, Mihranyan A, Larsson S, Strømme M, Engqvist H. In vivo evaluation of functionalized biomimetic hydroxyapatite for local delivery of active agents. J Biomater Nanobiotech 2011; 02: 149–154.
- 14Lilja M, Forsgren J, Welch K, Åstrand M, Engqvist H, Strømme M. Photocatalytic and antimicrobial properties of surgical implant coatings of titanium dioxide deposited though cathodic arc evaporation. Biotechnol Lett 2012; 34: 2299–2305.
- 15Lilja M, Welch K, Åstrand M, Engqvist H, Strømme M. Effect of deposition parameters on the photocatalytic activity and bioactivity of TiO2 thin films deposited by vacuum arc on Ti-6Al-4V substrates. J Biomed Mater Res 2012; 100: 1078–1085.
- 16Lilja M, Lindahl C, Xia W, Engqvist H, Strømme M. The effect of Si-doping on the release of antibiotic from hydroxyapatite coatings. J Biomater Nanobiotech 2013; 04: 237–241.
10.4236/jbnb.2013.43029 Google Scholar
- 17Cai Y, Strømme M, Melhus Å, Engqvist H, Welch K. Photocatalytic inactivation of biofilms on bioactive dental adhesives. J Biomed Mater Res B 2014; 102: 62–67.
- 18Welch K, Cai Y, Engqvist H, Strømme M. Dental adhesives with bioactive and on-demand bactericidal properties. Dent Mater 2010; 26: 491–499.
- 19Lilja M, Sörensen JH, Brohede U, Åstrand M, Procter P, Arnoldi J, Steckel H, Strømme M. Drug loading and release of Tobramycin from hydroxyapatite coated fixation pins. J Mater Sci Mater Med 2013; 24: 2265–2274.
- 20Hetrick EM, Schoenfisch MH. Reducing implant-related infections: Active release strategies. Chem Soc Rev 2006; 35: 780.
- 21Sudo A, Hasegawa M, Fukuda A, Uchida A. Treatment of infected hip arthroplasty with antibiotic-impregnated calcium hydroxyapatite. J Arthroplasty 2008; 23: 145–150.
- 22Filiaggi MJ, Coombs NA, Pilliar RM. Characterization of the interface in the plasma-sprayed HA coating/Ti-6Al-4V implant system. J Biomed Mater Res 1991; 25: 1211–1229.
- 23Palka V, Postrkova E, Koerten HK. Some characteristics of hydroxylapatite powder particles after plasma spraying. Biomaterials 1998; 19: 1763–1772.
- 24Ellies L, Nelson D, Featherstone J. Crystallographic changes in calcium phosphates during plasma-spraying. Biomaterials 1992; 13: 313–316.
- 25Mihranyan A, Forsgren J, Strømme M, Engqvist H. Assessing surface area evolution during biomimetic growth of hydroxyapatite coatings. Langmuir 2009; 25: 1292–1295.
- 26Hu R, Lin C, Shi H. A novel ordered nano hydroxyapatite coating electrochemically deposited on titanium substrate. J Biomed Mater Res A 2007; 80: 687–692.
- 27Åberg J, Brohede U, Mihranyan A, Strømme M, Engqvist H. Bisphosphonate incorporation in surgical implant coatings by fast loading and co-precipitation at low drug concentrations. J Mater Sci Mater Med 2009; 20: 2053–2061.
- 28Raschke MJ, Schmidmaier G. Biological coating of implants in trauma and orthopedic surgery. Unfallchirurg 2004; 107: 653–663.
- 29Wildemann B, Sander A, Schwabe P, Lucke M, Stöckle U, Raschke M, et al. Short term in vivo biocompatibility testing of biodegradable poly(d,l-lactide)—growth factor coating for orthopaedic implants. Biomaterials 2005; 26: 4035–4040.
- 30Piskounova S, Forsgren J, Brohede U, Engqvist H, Strømme M. In vitro characterization of bioactive titanium dioxide/hydroxyapatite surfaces functionalized with BMP-2. J. Biomed Mater Res 2009; 91: 780–787.
- 31Forsgren J, Brohede U, Strømme M, Engqvist H. Co-loading of bisphosphonates and antibiotics to a biomimetic hydroxyapatite coating. Biotechnol Lett 2011; 33: 1265–1268.
- 32Nijhof MW, Dhert WJ, Fleer A, Vogely HC, Verbout AJ. Prophylaxis of implant-related staphylococcal infections using tobramycin-containing bone cement. J Biomed Mater Res 2000; 52: 754–761.
- 33HPLC detection of gentimcin sulphate. Br Pharmacopoeia 1999; I: 695–697.
- 34Fabre H, Sekkat M, Blanchin MD, Mandrou B. Determination of aminoglycosides in pharmaceutical formulations–II. High-performance liquid chromatography. J Pharm Biomed Anal 1989; 7: 1711–1718.
- 35Zarie ES, Kaidas V, Gedamu D, Mishra YK, Adelung R, Furkert FH, Scherließ R, Steckel H, Groessner-Schreiber B. Solvent free fabrication of micro and nanostructured drug coatings by thermal evaporation for controlled release and increased effects. PLoS One 2012; 7: e40746.
- 36Mikrobiologische Wertbestimmung von Antibiotika. Eur Pharmacopoeia 7.0 2011: 287–290.
- 37Fuchs S, Hermanns MI, Kirkpatrick CJ. Retention of a differentiated endothelial phenotype by outgrowth endothelial cells isolated from human peripheral blood and expanded in long-term cultures. Cell Tissue Res 2006; 326: 79–92.
- 38Kolbe M, Dohle E, Katerla D, Kirkpatrick CJ, Fuchs S. Enrichment of outgrowth endothelial cells in high and low colony-forming cultures from peripheral blood progenitors. Tissue Eng Part C Methods 2010; 16: 877–886.
- 39Fuchs S, Ghanaati S, Orth C, Barbeck M, Kolbe M, Hofmann A, Eblenkamp M, Gomes M, Reis RL, Kirkpatrick CJ. Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Biomaterials 2009; 30: 526–534.
- 40Hofmann A, Konrad L, Gotzen L, Printz H, Ramaswamy A, Hofmann C. Bioengineered human bone tissue using autogenous osteoblasts cultured on different biomatrices. J Biomed Mater Res A 2003; 67: 191–199.
- 41D'Arrigo M, Ginestra G, Mandalari G, Furneri P, Bisignano G. Synergism and postantibiotic effect of tobramycin and Melaleuca alternifolia (tea tree) oil against Staphylococcus aureus and Escherichia coli. Phytomedicine 2010; 17: 317–322.
- 42Moroni A, Aspenberg P, Toksvig-Larsen S, Falzarano. Enhanced fixation with hydroxyapatite coated pins. Clin Orthop Relat Res 1998; 346: 171–177.
- 43Sanden B, Olerud C, Johansson C, Larsson S. Improved extraction torque of hydroxyapatite-coated pedicle screws. Eur Spine J 2000; 9: 534–537.
- 44Orienti L, Fini M, Rocca M, Giavaresi G, Guzzardella M, Moroni A, Giardino R. Measurement of insertion torque of tapered external fixation pins: A comparison between two experimental models. J Biomed Mater Res 1999; 48: 216–219.
10.1002/(SICI)1097-4636(1999)48:3<216::AID-JBM3>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 45Capper M, Soutis C, Oni OO. Comparison of the stresses generated at the pin-bone interface by standard and conical external fixator pins. Biomaterials 1994; 15: 471–473.
- 46Koistinen A, Santavirta SS, Kröger H, Lappalainen R. Effect of bone mineral density and amorphous diamond coatings on insertion torque of bone screws. Biomaterials 2005; 26: 5687–5694.
- 47Morscher EW, Hefti A, Aebi U. Severe osteolysis after third-body wear due to hydroxyapatite particles from acetabular cup coating. J Bone Joint Surg Br 1998; 80: 267–272.
- 48Yang Y, Ong JL. Bond strength, compositional, and structural properties of hydroxyapatite coating on Ti, ZrO2-coated Ti, and TPS-coated Ti substrate. J Biomed Mater Res A 2003; 64: 509–516.
- 49Forsgren J, Svahn F, Jarmar T, Engqvist H. Formation and adhesion of biomimetic hydroxyapatite deposited on titanium substrates. Acta Biomater 2007; 3: 980–984.
- 50Cheng K, Han G, Weng W, Qu H, Du P, Shen G, Yang J, Ferreira JMF. Sol–gel derived fluoridated hydroxyapatite films. Mater Res Bull 2003; 38: 89–97.
- 51Wang J, Layrolle P, Stigter M, Groot K de. Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment. Biomaterials 2004; 25: 583–592.
- 52Zhang S, Xianting Z, Yongsheng W, Kui C, Wenjian W. Adhesion strength of sol–gel derived fluoridated hydroxyapatite coatings. Surf Coat Tech 2006; 200: 6350–6354.
- 53Matthews A. Methods for assessing coating adhesion. Le Vide, les Couches Minces 1988; 1: 7–15.
- 54Kurzweg H, Heimann R, Troczynski T, Wayman M, Development of plasma-sprayed bioceramics coatings with bond coats based on titania and zirconia. Biomaterials 1998, 16: 1507–1511.
- 55Yang YC, Chang E. Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V substrate. Biomaterials 2001; 22: 1827–1836.
- 56Lindgren M, Åstrand M, Wiklund U, Engqvist H. Investigation of boundary conditions for biomimetic HA deposition on titanium oxide surfaces. J Mater Sci Mater Med 2009; 20: 1401–1408.