Development of hybrid scaffold: Bioactive glass nanoparticles/chitosan for tissue engineering applications
Corresponding Author
Hassane Oudadesse
Univ Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
Correspondence
Hassane Oudadesse, Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
Email: [email protected]
Search for more papers by this authorSanaa Najem
Univ Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
Search for more papers by this authorSiwar Mosbahi
Univ Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
Search for more papers by this authorNicolas Rocton
Univ Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
Search for more papers by this authorJihen Refifi
Univ Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
Faculty of Science, University of Sfax, Sfax, Tunisia
Search for more papers by this authorHafedh El Feki
Faculty of Science, University of Sfax, Sfax, Tunisia
Search for more papers by this authorBertrand Lefeuvre
Univ Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
Search for more papers by this authorCorresponding Author
Hassane Oudadesse
Univ Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
Correspondence
Hassane Oudadesse, Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
Email: [email protected]
Search for more papers by this authorSanaa Najem
Univ Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
Search for more papers by this authorSiwar Mosbahi
Univ Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
Search for more papers by this authorNicolas Rocton
Univ Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
Search for more papers by this authorJihen Refifi
Univ Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
Faculty of Science, University of Sfax, Sfax, Tunisia
Search for more papers by this authorHafedh El Feki
Faculty of Science, University of Sfax, Sfax, Tunisia
Search for more papers by this authorBertrand Lefeuvre
Univ Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
Search for more papers by this authorFunding information: CNRS; Centre National de la Recherche Scientifique:; Université de Rennes 1
Abstract
Bone tissue engineering is gaining popularity as an alternative method for the treatment of osseous defects. A number of biodegradable polymers have been explored for tissue engineering purposes. A new family of biodegradable polymer/bioactive glass composite materials has been designed to be used in bone regeneration approaches. In this work, a hybrid scaffold of chitosan (CH) and bioactive glass nanoparticles (BGN) was prepared by the freeze-gelation method. This method has been studied by adjusting the concentration of acetic acid; this process can influence the structure properties of the scaffold. In this work, several BGN/CH composites have been prepared by varying the proportion of BGN in the hybrid scaffold (20, 40, 60, and 80%). Brunauer–Emmett–Teller results showed the increased surface area and porosity volume of our composite with decreasing BGN proportion. BGN/CH hybrid scaffold was characterized by using physicochemical techniques. Obtained results showed a macroporous morphology of the scaffold with a pore size of about 200 μm, and a homogeneous distribution of the BGN in the CH matrix. X-ray diffraction study confirmed the amorphous state of the BGN/CH hybrid scaffold. Interaction between CH and BGNs in the composite was confirmed. The in vitro assays showed adequate degradation properties, which is essential for the potential replacement by the new tissue. The in vitro bioactivity studies confirmed the formation of an apatite layer on the surface of the hybrid scaffold, which results in a direct bone bonding of the implant. These results indicate that BGN/CH hybrid scaffold developed is a potential candidate for bone tissue engineering.
CONFLICT OF INTEREST
The authors declare no potential conflict of interest.
REFERENCES
- Alves, N. M., Leonor, I. B., Azevedo, H. S., Reis, R. L., & Mano, J. F. (2010). Designing biomaterials based on biomineralization of bone. Journal of Materials Chemistry, 20(15), 2911. https://doi.org/10.1039/b910960a
- Aranaz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., … Heras, A. (2009). Functional characterization of chitin and chitosan. Current Chemical Biology, 3(2), 203–230. https://doi.org/10.2174/2212796810903020203
- Balanta, D. (2014). Utilización de quitosanoprocedentedelmicelio de Aspergillus Níger y su aplicación en regeneración de tejidos (MS thesis). Universidaddel Valle, Cali, Colombia.
- Berthiaume, F., Maguire, T. J., & Yarmush, M. L. (2011). Tissue engineering and regenerative medicine: History, progress, and challenges. Annual Review of Chemical and Biomolecular Engineering, 2(1), 403–430. https://doi.org/10.1146/annurev-chembioeng-061010-114257
- Bi, L., Cao, Z., Hu, Y., Song, Y., Yu, L., Yang, B., … Han, Y. (2011). Effects of different cross-linking conditions on the properties of genipin-cross-linked chitosan/collagen scaffolds for cartilage tissue engineering. Journal of Materials Science: Materials in Medicine, 22(1), 51–62. https://doi.org/10.1007/s10856-010-4177-3
- Bui, X. V., Oudadesse, H., Le Gal, Y., Merdrignac-Conanec, O., & Cathelineau, G. (2012). Bioactivity behaviour of biodegradable material comprising bioactive glass. Korean Journal of Chemical Engineering, 29(2), 215–220. https://doi.org/10.1007/s11814-011-0151-0
- Chen, G., Ushida, T., & Tateishi, T. (2000). A biodegradable hybrid sponge nested with collagen microsponges. Journal of Biomedical Materials Research, 51, 273–282. https://doi.org/10.1002/(SICI)1097-4636(200008)51:2<273::AID-JBM16>3.0.CO;2-O
10.1002/(SICI)1097-4636(200008)51:2<273::AID-JBM16>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- Chen, G., Ushida, T., & Tateishi, T. (2001). Preparation of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams by use of ice microparticulates. Biomaterials, 22(18), 2563–2567. https://doi.org/10.1016/S0142-9612(00)00447-6
- Chesnutt, B. M., Viano, A. M., Yuang, Y., Guda, T., Applefors, M. R., Ong, J. L., … Bumgardner, J. D. (2009). Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. Journal of Biomedical Materials Research, 88A, 491–502. https://doi.org/10.1002/jbm.a.31878
- Di Martino, A., Sittinger, M., & Risbud, M. V. (2005). Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 26(30), 5983–5990. https://doi.org/10.1016/j.biomaterials.2005.03.016
- Dorj, B., Park, J.-H., & Kim, H.-W. (2012). Robocasting chitosan/nanobioactive glass dual-pore structured scaffolds for bone engineering. Materials Letters, 73, 119–122. https://doi.org/10.1016/j.matlet.2011.12.107
- Gupta, P. N., Mahor, S., Khatri, K., Goyal, A., & Vyas, S. P. (2006). Phospholipid vesicles containing chitosan nanoparticles for oral immunization: preparation and in-vito investigation. Asian Chitin Journal, 2, 91–96.
- Han, M. J. (2000). Biodegradable membranes for the controlled release of progesterone. 1. Characterization of membrane morphologies coagulated from PLGA/progesterone/DMF solutions. Journal of Applied Polymer Science, 75, 60–67. https://doi.org/10.1002/(SICI)1097-4628(20000103)75:1<60::AID-APP7>3.0.CO;2-8
- Harris, L. D., Kim, B. S., & Mooney, D. J. (1998). Open pore biodegradable matrices formed with gas foaming. Journal of Biomedical Materials Research, 42(3), 396–402. https://doi.org/10.1002/(sici)1097-4636(19981205)42:3<396::aid-jbm7>3.0.co;2-e
10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- Hirano, S., Itakura, C., Seino, H., Akiyama, Y., Nonaka, I., Kanbara, N., & Kawakami, T. (1990). Chitosan as an ingredient for domestic animal feeds. Journal of Agricultural and Food Chemistry, 38(5), 1214–1217. https://doi.org/10.1021/jf00095a012
- Ho, M.-H., Kuo, P.-Y., Hsieh, H.-J., Hsien, T.-Y., Hou, L.-T., Lai, J.-Y., & Wang, D.-M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129–138. https://doi.org/10.1016/S0142-9612(03)00483-6
- Hunger, P. M., Donius, A. E., & Wegst, U. G. K. (2013). Structure–property-processing correlations in freeze-cast composite scaffolds. Acta Biomaterialia, 9(5), 6338–6348. https://doi.org/10.1016/j.actbio.2013.01.012
- Jayakumar, R., Nwe, N., Tokura, S., & Tamura, H. (2007). Sulfated chitin and chitosan as novel biomaterials. International Journal of Biological Macromolecules, 40(3), 175–181. https://doi.org/10.1016/j.ijbiomac.2006.06.021
- Jayakumar, R., Prabaharan, M., Reis, R. L., & Mano, J. F. (2005). Graft copolymerized chitosan—Present status and applications. Carbohydrate Polymers, 62(2), 142–158. https://doi.org/10.1016/j.carbpol.2005.07.017
- Jayakumar, R., Reis, R. L., & Mano, J. F. (2006). Chemistry and applications of phosphorylated chitin and chitosan. E-Polymers, 6(1), 1–10. https://doi.org/10.1515/epoly.2006.6.1.447
10.1515/epoly.2006.6.1.447 Google Scholar
- Jayakumar, R., Selvamurugan, N., Nair, S. V., Tokura, S., & Tamura, H. (2008). Preparative methods of phosphorylated chitin and chitosan—An overview. International Journal of Biological Macromolecules, 43(3), 221–225. https://doi.org/10.1016/j.ijbiomac.2008.07.004
- Jayakumar, R., & Tamura, H. (2006). Apatite forming ability of N-carboxymethyl chitosan gels in a simulated body fluid. Asian Chitin Journal, 2, 61–68.
- Jebahi, S., Oudadesse, H., Saleh, G. B., Saoudi, M., Mesadhi, S., Rebai, T., … el Feki, H. (2014). Chitosan-based bioglass composite for bone tissue healing: Oxidative stress status and antiosteoporotic performance in a ovariectomized rat model. Korean Journal of Chemical Engineering, 31(9), 1616–1623. https://doi.org/10.1007/s11814-014-0072-9
- Jiang, L., Li, Y., Wang, X., Zhang, L., Wen, J., & Gong, M. (2008). Preparation and properties of nano-hydroxyapatite/chitosan/carboxymethyl cellulose composite scaffold. Carbohydrate Polymers, 74(3), 680–684. https://doi.org/10.1016/j.carbpol.2008.04.035
- Jiang, T., Nair, L. S., & Laurencen, C. T. (2006). Chitosan composites for tissue engineering: Bone tissue engineering scaffolds. Asian Chitin Journal, 2, 1–10.
- Jones, J. R. (2013). Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 9(1), 4457–4486. https://doi.org/10.1016/j.actbio.2012.08.023
- Karageorgiou, V., & Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27), 5474–5491. https://doi.org/10.1016/j.biomaterials.2005.02.002
- Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity. Biomaterials, 27(15), 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017
- Kong, L., Gao, Y., Cao, W., Gong, Y., Zhao, N., & Zhang, X. (2005). Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. Journal of Biomedical Materials Research, 75A(2), 275–282. https://doi.org/10.1002/jbm.a.30414
- Ma, J., Wang, H., He, B., & Chen, J. (2001). A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials, 22(4), 331–336. https://doi.org/10.1016/S0142-9612(00)00188-5
- Madhumathi, K., Binulal, N. S., Nagahama, H., Tamura, H., Shalumon, K. T., Selvamurugan, N., … Jayakumar, R. (2009). Preparation and characterization of novel β-chitin–hydroxyapatite composite membranes for tissue engineering applications. International Journal of Biological Macromolecules, 44(1), 1–5. https://doi.org/10.1016/j.ijbiomac.2008.09.013
- Mooney, D. J., Baldwin, D. F., Suh, N. P., Vacanti, J. P., & Langer, R. (1996). Novel approach to fabricate porous sponges of poly(d,l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials, 17(14), 1417–1422. https://doi.org/10.1016/0142-9612(96)87284-X
- Mozafari, M., & Moztarzadeh, F. (2014). Synthesis, characterization and biocompatibility evaluation of sol–gel derived bioactive glass scaffolds prepared by freeze casting method. Ceramics International, 40(4), 5349–5355. https://doi.org/10.1016/j.ceramint.2013.10.115
- Muzzarelli, R., Baldassarre, V., Conti, F., Ferrara, P., Biagini, G., Gazzanelli, G., & Vasi, V. (1988). Biological activity of chitosan: Ultrastructural study. Biomaterials, 9(3), 247–252. https://doi.org/10.1016/0142-9612(88)90092-0
- Muzzarelli, R. A. A. (2009). Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers, 76(2), 167–182. https://doi.org/10.1016/j.carbpol.2008.11.002
- Nam, Y. S., & Park, T. G. (1999). Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. Journal of Biomedical Materials Research, 47(1), 8–17. https://doi.org/10.1002/(sici)1097-4636(199910)47:1<8::aid-jbm2>3.0.co;2-l
10.1002/(SICI)1097-4636(199910)47:1<8::AID-JBM2>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- Oudadesse, H., Wers, E., Bui, X. V., Roiland, C., Bureau, B., Akhiyat, I., … Pellen-Mussi, P. (2013). Chitosan effects on glass matrices evaluated by biomaterial. MAS-NMR and Biological Investigations. Korean Journal of Chemical Engineering, 30(9), 1775–1783. https://doi.org/10.1007/s11814-013-0104-x
- Park, Y. J., Nam, K. H., Ha, S. J., Pai, C. M., Chung, C. P., & Lee, S. J. (1997). Porous poly(l-Lactide) membranes for guided tissue regeneration and controlled drug delivery: Membrane fabrication and characterization. Journal of Controlled Release, 43(2–3), 151–160. https://doi.org/10.1016/S0168-3659(96)01494-0
- Rahaman, M. N., Day, D. E., Sonny Bal, B., Fu, Q., Jung, S. B., Bonewald, L. F., & Tomsia, A. P. (2011). Bioactive glass in tissue engineering. Acta Biomaterialia, 7(6), 2355–2373. https://doi.org/10.1016/j.actbio.2011.03.016
- Schugens, C., Maquet, V., Grandfils, C., Jerome, R., & Teyssie, P. (1996b). Polylactide macroporous biodegradable implants for cell transplantation. II. Preparation of polylactide foams by liquid-liquid phase separation. Journal of Biomedical Materials Research, 30(4), 449–461. https://doi.org/10.1002/(SICI)1097-4636(199604)30:4<449::AID-JBM3>3.0.CO;2-P
10.1002/(SICI)1097-4636(199604)30:4<449::AID-JBM3>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- Schugens, C., Maquet, V., Grandfils, C., Jerome, R., & Teyssie, P. (1996a). Biodegradable and macroporous polylactide implants for cell transplantation: 1. Preparation of macroporous polylactide supports by solid-liquid phase separation. Polymer, 37(6), 1027–1038. https://doi.org/10.1016/0032-3861(96)87287-9
- Şenel, S., & McClure, S. J. (2004). Potential applications of chitosan in veterinary medicine. Advanced Drug Delivery Reviews, 56(10), 1467–1480. https://doi.org/10.1016/j.addr.2004.02.007
- Seol, Y.-J., Lee, J.-Y., Park, Y.-J., Lee, Y.-M., Ku, Y., Rhyu, I.-C., … Chung, C.-P. (2004). Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnology Letters, 26(13), 1037–1041. https://doi.org/10.1023/B:BILE.0000032962.79531.fd
- Silver, I. A., Deas, J., & Erecińska, M. (2001). Interactions of bioactive glasses with osteoblasts in vitro: Effects of 45S5 bioglass®, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability. Biomaterials, 22(2), 175–185. https://doi.org/10.1016/S0142-9612(00)00173-3
- Slivka, M. A., Leatherbury, N. C., Kieswetter, K., & Niederaur, G. (2002). Porous, resorbable, fiber-reinforced scaffolds tailored for articular cartilage repair. Tissue Engineering, 7(6), 767–780. https://doi.org/10.1089/107632701753337717
10.1089/107632701753337717 Google Scholar
- Takahashi, Y., Yamamoto, M., & Tabata, Y. (2005). Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and β-tricalcium phosphate. Biomaterials, 26(17), 3587–3596. https://doi.org/10.1016/j.biomaterials.2004.09.046
- Webster, T. (2000). Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials, 21(17), 1803–1810. https://doi.org/10.1016/S0142-9612(00)00075-2
- Whang, K., Thomas, C. H., Healy, K. E., & Nuber, G. (1995). A novel method to fabricate bioabsorbable scaffolds. Polymer, 36(4), 837–842. https://doi.org/10.1016/0032-3861(95)93115-3
- Yin, Y., Ye, F., Cui, J., Zhang, F., Li, X., & Yao, K. (2003). Preparation and characterization of macroporous chitosan-gelatin/β-tricalcium phosphate composite scaffolds for bone tissue engineering. Journal of Biomedical Materials Research, 67A(3), 844–855. https://doi.org/10.1002/jbm.a.10153
- Zhang, Y., Venugopal, J. R., El-Turki, A., Ramakrishna, S., Su, B., & Lim, C. T. (2008). Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials, 29(32), 4314–4322. https://doi.org/10.1016/j.biomaterials.2008.07.038
- Zhao, F., Grayson, W. L., Ma, T., Bunnell, B., & Lu, W. W. (2006). Effects of hydroxyapatite in 3-D chitosan–gelatin polymer network on human mesenchymal stem cell construct development. Biomaterials, 27(9), 1859–1867. https://doi.org/10.1016/j.biomaterials.2005.09.031
- Zheng, J. P., Wang, C. Z., Wang, X. X., Wang, H. Y., Zhuang, H., & Yao, K. D. (2007). Preparation of biomimetic three-dimensional gelatin/montmorillonite–chitosan scaffold for tissue engineering. Reactive and Functional Polymers, 67(9), 780–788. https://doi.org/10.1016/j.reactfunctpolym.2006.12.002