Surface modification of implanted cardiovascular metal stents: From antithrombosis and antirestenosis to endothelialization
Kun Zhang
Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 People's Republic of China
Search for more papers by this authorTao Liu
Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 People's Republic of China
Search for more papers by this authorJing-An Li
Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 People's Republic of China
Search for more papers by this authorJun-Ying Chen
Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 People's Republic of China
Search for more papers by this authorJian Wang
Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 People's Republic of China
Search for more papers by this authorNan Huang
Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 People's Republic of China
Search for more papers by this authorKun Zhang
Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 People's Republic of China
Search for more papers by this authorTao Liu
Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 People's Republic of China
Search for more papers by this authorJing-An Li
Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 People's Republic of China
Search for more papers by this authorJun-Ying Chen
Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 People's Republic of China
Search for more papers by this authorJian Wang
Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 People's Republic of China
Search for more papers by this authorNan Huang
Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 People's Republic of China
Search for more papers by this authorAbstract
Driven by the complications occurring with bare metal stents and drug-eluting stents, concerns have been raised over strategies for long-term safety, with respect to preventing or inhibiting stent thrombosis, restenosis, and in-stent restenosis in particularly. Surface modification is very important in constructing a buffer layer at the interface of the organic and inorganic materials and in ultimately obtaining long-term biocompatibility. In this review, we summarize the developments in surface modification of implanted cardiovascular metal stents. This review focuses on the modification of metal stents via coating drugs or biomolecules to enhance antithrombosis, antirestenosis, and/or endothelialization. In addition, we indicate the probable future work involving the modification of the metallic blood-contacting surfaces of stents and other cardiovascular devices that are under development. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 588–609, 2014.
REFERENCES
- 1Zittermann A, Gummert JF. Sun, vitamin D, and cardiovascular disease. J Photochem Photobiol B 2010; 101: 124–129.
- 2Franco M, Cooper RS, Bilal U, Fuster V. Challenges and opportunities for cardiovascular disease prevention. Am J Med 2011; 124: 95–102.
- 3Pramparo P, Montano CM, Barceló A, Avezum A, Wilks R. Cardiovascular diseases in Latin America and the Caribbean: The present situation. Prev Control 2006; 2: 149–157.
10.1016/j.precon.2007.03.002 Google Scholar
- 4Hu SS, Li Y. The surgeon's role in the control and prevention of cardiovascular disease in contemporary China. CVD Prev Control 2009; 4: 85–90.
10.1016/j.cvdpc.2008.08.005 Google Scholar
- 5Andersson J, Libby P, Hansson GK. Adaptive immunity and atherosclerosis. Clin Immunol 2010; 134: 33–46.
- 6Ludman PF. Percutaneous coronary intervention. Medicine 2002; 30: 81–84.
10.1383/medc.30.4.81.28291 Google Scholar
- 7Li AY, Law KB, Phillips KR, Nwachukwu H, Butany J, Gotlieb AI. Pathology of cardiovascular interventions and surgery. Diagn Cytopathol 2009; 16: 17–30.
- 8Garg S, Serruys PW. Coronary stents: Current status. J Am Coll Cardiol 2010; 56: S1–S42.
- 9Mani G, Feldman MD, Patel D, Agrawal CM. Coronary stents: A materials perspective. Biomaterials 2007;28: 1689–1710.
- 10Venkatraman S, Boey F, Lao LL. Implanted cardiovascular polymers: Natural, synthetic and bio-inspired. Prog Polym Sci 2008; 33: 853–874.
- 11O'Brien B, Carroll W. The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: A review. Acta Biomater 2009; 5: 945–958.
- 12Agostoni P, Vermeersch P, Knaapen M, Verheye S. Stent thrombosis is not always stent thrombosis: De novo atherosclerosis in a stented coronary segment. Int J Cardiol 2010; 144: e19–e21.
- 13Jamshidi P, Toggweiler S, Erne P. In-stent restenosis and thrombosis 41 months after drug-eluting stent implantation. Int J Cardiol 2008; 130: e111–e113.
- 14Karakurt O, Akdemir R. Stent thrombosis: Nightmare of the interventional cardiology era. Int J Cardiol 2011; 148: e51–e52.
- 15Celik T, Iyisoy A, Celik M, Isik E. A case of very late stent thrombosis after bare metal coronary stent implantation: A neglected complication. Int J Cardiol 2009; 134: 111–113.
- 16Mitsutake Y, Ueno T, Yokoyama S, Sasaki K, Sugi Y, Toyama Y, Koiwaya H, Ohtsuka M, Nakayoshi T, Itaya N, Chibana H, Kakuma T, Imaizumi T. Coronary endothelial dysfunction distal to stent of first-generation drug-eluting stents. JACC Cardiovasc Interv 2012; 5: 966–973.
- 17Lee CW, Kang SJ, Park DW, Lee SH, Kim YH, JJ Kim, Park SW, Mintz GS, Park SJ. Intravascular ultrasound findings in patients with very late stent thrombosis after either drug-eluting or bare-metal stent implantation. J Am Coll Cardiol 2010;55: 1936–1942.
- 18Holmes DR Jr, Kereiakes DJ, Garg S, Serruys PW, Dehmer GJ, Ellis SG, Williams DO, Kimura T, Moliterno DJ. Stent thrombosis. J Am Coll Cardiol 2010; 56: 1357–1365.
- 19Giglioli C, Valente S, Margheri M, Comeglio M, Chiostri M, Romano SM, Saletti E, Falai M, Chechi T, Gensini GF. An angiographic evaluation of restenosis rate at a six-month follow-up of patients with ST-elevation myocardial infarction submitted to primary percutaneous coronary intervention. Int J Cardiol 2009; 131: 362–369.
- 20Hecht HS, Polena S, Jelnin V, Jimenez M, Bhatti T, Parikh M, Panagopoulos G, Roubin G. Stent gap by 64-detector computed tomographic angiography: Relationship to in-stent restenosis, fracture, and overlap failure. J Am Coll Cardiol 2009;54: 1949–1959.
- 21Costa MA, Simon DI. Molecular basis of restenosis and drug-eluting stents. Circulation 2005; 111: 2257–2273.
- 22Scott NA. Restenosis following implantation of bare metal coronary stents: Pathophysiology and pathways involved in the vascular response to injury. Adv Drug Deliver Rev 2006; 58: 358–376.
- 23Lowe HC, Oesterle SN, Khachigian LM. Coronary in-stent restenosis: Current status and future strategies. J Am Coll Cardiol 2002; 39: 183–193.
- 24Narita H, Chen S, Komori K, Kadomatsu K. Midkine is expressed by infiltrating macrophages in in-stent restenosis in hypercholesterolemic rabbits. J Vasc Surg 2008; 47: 1322–1329.
- 25Kalińczuk Ł, Demkow M, Mintz GS, Cedro K, Debski A, Ciszewski M, Ciszewski A, Kruk M, Karcz M, Warmiński G, Pregowski J, Chmielak Z, Witkowski A, Lubiszewska B, Ruzyłło W. Impact of different re-stenting strategies on expansion of a drug-eluting stent implanted to treat bare-metal stent restenosis. Am J Cardiol 2009; 104: 531–537.
- 26Antonios VS, Noel AA, Steckelberg JM, Wilson WR, Mandrekar JN, Harmsen WS, Baddour LM. Prosthetic vascular graft infection: A risk factor analysis using a case–control study. J Infect 2006; 53: 49–55.
- 27Hogg ME, Peterson BG, Pearce WH, Morasch MD, Kibbe MR. Bare metal stent infections: Case report and review of the literature. J Vasc Surg 2007; 46: 813–820.
- 28Szczot M, Meybeck A, Legout L, Pasquet A, Grunderbeeck NV, Langlois J, Sarraz-Bournet B, Devos P, Leroy O. Vascular graft infections in the intensive care unit: Clinical spectrum and prognostic factors. J Infect 2011; 62: 204–211.
- 29Thibodeaux LC, James KV, Lohr JM, Welling RE, Roberts WH. Infection of endovascular stents in a swine model. Am J Surg 1996; 172: 151–154.
- 30Raychaudhuri R, Yu WG, Hatanpaa K, Cavuoti D, Pride GL, White J. Basilar artery dissection treated by Neuroform stenting: Fungal stent infection. Surg Neurol 2009; 71: 477–480.
- 31Wu EB, Chan WWM, Yu CM. Left main stem rupture caused by methicillin resistant Staphylococcus aureus infection of left main stent treated by covered stenting. Int J Cardiol 2010; 144: 39–41.
- 32Kuehn C, Graf K, Mashaqi B, Pichlmaier M, Heuer W, Hilfiker A, Stiesch M, Chaberny IF, Haverich A. Prevention of early vascular graft infection using regional antibiotic release. J Surg Res 2010; 164: 185–191.
- 33Saleem BR, Meerwaldt R, Tielliu IFJ, Verhoeven ELG, van den Dungen JJAM, Zeebregts CJ. Conservative treatment of vascular prosthetic graft infection is associated with high mortality. Am J Surg 2010; 200: 47–52.
- 34Fernebro J. Fighting bacterial infections—Future treatment options. Drug Resist Updat 2011; 14: 125–139.
- 35Chen MC, Chang Y, Liu CT, Lai WY, Peng SF, Hung YW, Tsai HW, Sung HW. The characteristics and in vivo suppression of neointimal formation with sirolimus-eluting polymeric stents. Biomaterials 2009; 30: 79–88.
- 36Huang N, Yang P, Leng YX, Wang J, Sun H, Chen JY, Wan GJ. Surface modification of biomaterials by plasma immersion ion implantation. Surf Coat Technol 2004; 186: 218–226.
- 37Avci-Adali M, Ziemer G, Wendel HP. Induction of EPC homing on biofunctionalized vascular grafts for rapid in vivo self-endothelialization—A review of current strategies. Biotechnol Adv 2010; 28: 119–129.
- 38Garg S, Serruys PW. Coronary stents: Looking forward. J Am Coll Cardiol 2010; 56: S43–S78.
- 39Xie D, Wan GJ, Maitz MF, Sun H, Huang N. Deformation and corrosion behaviors of Ti–O film deposited 316L stainless steel by plasma immersion ion implantation and deposition. Surf Coat Technol 2013; 214: 117–123.
- 40Leng YX, Sun H, Yang P, Chen JY, Wang J, Wan GJ, Huang N, Tian XB, Wang LP, Chu PK. Biomedical properties of tantalum nitride films synthesized by reactive magnetron sputtering. Thin Solid Films 2001; 398–399: 471–475.
- 41Sun XQ, Li D, Liu B, Zhang YH, Ma ZL. Preparation and anti-blood coagulation property of heparin/fluorocarbon composite film using radio frequency sputtering Surf Coat Technol 2007; 201: 5659–5663.
- 42Zhu JZ, Xiong XW, Du R, Jing YJ, Ying Y, Fan XM, Zhu TQ, Zhang RY. Hemocompatibility of drug-eluting coronary stents coated with sulfonated poly(styrene-block-isobutylene-block-styrene). Biomaterials 2012; 33: 8204–8212.
- 43Li H, Chen C, Zhang SR, Jiang J, Tao HY, Xu JL, Sun JG, Zhong W, Chen SY. The use of layer by layer self-assembled coatings of hyaluronic acid and cationized gelatin to improve the biocompatibility of poly(ethylene terephthalate) artificial ligaments for reconstruction of the anterior cruciate ligament. Acta Biomater 2012; 8: 4007–4019.
- 44Hoshi RA, Lith RV, Jen MC, Allen JB, Lapidos KA, Ameer G. The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts. Biomaterials 2013; 34: 30–41.
- 45Zhang WS, Zhu ZW, Cheng CY. A literature review of titanium metallurgical processes. Hydrometallurgy 2011; 108: 177–188.
- 46Thomas R. Titanium in the geothermal industry. Geothermics 2003; 32: 679–687.
- 47Huang N, Yang P, Leng YX, Chen JY, Sun H, Wang J, Wang GJ, Ding PD, Xi TF, Leng Y. Hemocompatibility of titanium oxide films. Biomaterials 2003; 24: 2177–2187.
- 48Yang P, Leng YX, Zhao AS, Zhou HF, Xu LX, Sun H, Huang N. Blood compatibility improvement of titanium oxide film modified by phosphorus ion implantation. Nucl Instrum Methods B 2006; 242: 15–17.
- 49Huang N, Yang P, Leng YX, Wang J, Sun H, Chen JY, Wan GJ. Surface modification of biomaterials by plasma immersion ion implantation. Surf Coat Technol 2004; 186: 218–226.
- 50Shao HH, Yu CH, Xu XJ, Wang J, Zhai R, Wang XJ. Influence of Ti nanocrystallization on microstructure, interface bonding, surface energy and blood compatibility of surface TiO2 films. Appl Surf Sci 2010; 257: 1649–1654.
- 51O'Brien B, Stinson J, Carroll W. Initial exploration of Ti–Ta, Ti–Ta–Ir and Ti–Ir alloys: Candidate materials for coronary stents original research article. Acta Biomater 2008; 4: 1553–1559.
- 52Yankov RA, Shevchenko N, Rogozin A, Maitz MF, Richter E, Möller W, Donchev A, Schütze M. Reactive plasma immersion ion implantation for surface passivation. Surf Coat Technol 2007; 201: 6752–6758.
- 53Plant SD, Grant DM, Leach L. Surface modification of NiTi alloy and human platelet activation under static and flow conditions. Mater Lett 2007; 61: 2864–2867.
- 54Koster R, Sommerauer M, Kahler J, Baldus S, Meinertz T, Hamm CW. Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. Lancet 2000;356: 1895–1897.
- 55Shahryari A, Azari F, Vali H, Omanovic S. The response of fibrinogen, platelets, endothelial and smooth muscle cells to an electrochemically modified SS316LS surface: Towards the enhanced biocompatibility of coronary stents. Acta Biomater 2010; 6: 695–701.
- 56Yang ZL, Wang J, Luo RF, Maitz MF, Jing FJ, Sun H, Huang N. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility. Biomaterials 2010; 31: 2072–2083.
- 57Leng YX, Chen JY, Yang P, Sun H, Wang J, Huang N. The biocompatibility of the tantalum and tantalum oxide films synthesized by pulse metal vacuum arc source deposition. Nucl Instrum Methods B 2006; 242: 30–32.
- 58Ding MH, Wang BL, Li L, Zheng YF. A study of TaxC1-x coatings deposited on biomedical 316L stainless steel by radio-frequency magnetron sputtering. Appl Surf Sci 2010; 257: 696–703.
- 59Ding MH, Wang BL, Li L, Zheng YF. Preparation and characterization of TaxC1-x coatings on biomedical 316L stainless steel. Surf Coat Technol 2010; 204: 2519–2526.
- 60Subramanian B, Jayachandran M. Electrochemical corrosion behavior of magnetron sputtered TiN coated steel in simulated bodily fluid and its hemocompatibility. Mater Lett 2008;62: 1727–1730.
- 61Wang HF, Tang B, Li XY. Microstructure and wear resistance of N-doped TiO2 coatings grown on stainless steel by plasma surface alloying technology. J Iron Steel Res Int 2011; 18: 73–78.
- 62Liu B, Zheng YF. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater 2011; 7: 1407–1420.
- 63Zhu SF, Huang N, Shu H, Wu YP, Xu L. Corrosion resistance and blood compatibility of lanthanum ion implanted pure iron by MEVVA. Appl Surf Sci 2009; 256: 99–104.
- 64Zhu SF, Huang N, Xu L, Zhang Y, Liu HQ, Lei YF, Sun H, Yao Y. Biocompatibility of Fe–O films synthesized by plasma immersion ion implantation and deposition. Surf Coat Technol 2009; 203: 1523–1529.
- 65Lu P, Fan HN, Liu Y, Cao Y, Wu XF, Xu XH. Controllable biodegradability, drug release behavior and hemocompatibility of PTX-eluting magnesium stents. Colloids Surf B: Biointerfaces 2011; 83: 23–28.
- 66Li M, Cheng Y, Zheng YF, Zhang X, Xi TF, Wei SC. Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film. Appl Surf Sci 2012; 258: 3074–3081.
- 67Gastaldi D, Sassi V, Petrini L, Vedani M, Trasatti S, Migliavacca F. Continuum damage model for bioresorbable magnesium alloy devices—Application to coronary stents. J Mech Behav Biomed Mater 2011; 4: 352–365.
- 68Gomez-Lara J, Radu M, Brugaletta S, Farooq V, Diletti R, Onuma Y, Windecker S, Thuesen L, McClean D, Koolen J, Whitbourn R, Dudek D, Smits PC, Regar E, Veldhof S, Rapoza R, Ormiston JA, Garcia-Garcia HM, Serruys PW. serial analysis of the malapposed and uncovered struts of the new generation of everolimus-eluting bioresorbable scaffold with optical coherence tomography. JACC Cardiovasc Interv 2011; 4: 992–1001.
- 69Gomez-Lara J, Brugaletta S, Farooq V, Onuma Y, Diletti R, Windecker S, Thuesen L, McClean D, Koolen J, Whitbourn R, Dudek D, Smits PC, Chevalier B, Regar E, Veldhof S, Rapoza R, Ormiston JA, Garcia-Garcia HM, Serruys PW. Head-to-head comparison of the neointimal response between metallic and bioresorbable everolimus-eluting scaffolds using optical coherence tomography. JACC Cardiovasc Interv 2011; 4: 1271–1280.
- 70Bakhshi R, Darbyshire A, Evans JE, You Z, Lu J, Seifalian AM. Polymeric coating of surface modified nitinol stent with POSS-nanocomposite polymer. Colloid Surf B 2011; 86: 93–105.
- 71Steigerwald K, Merl S, Kastrati A, Wieczorek A, Vorpahl M, Mannhold R, Vogeser M, Hausleiter J, Joner M, Schömig A, Wessely R. The pre-clinical assessment of rapamycin-eluting, durable polymer-free stent coating concepts. Biomaterials 2009; 30: 632–637.
- 72Chin-Quee SL. Hsu SH, Nguyen-Ehrenreich KL, Tai JT, Abraham GM, Pacetti SD, Chan YF, Nakazawa G, Kolodgie FD, Virmani R, Ding NN, Coleman LA. Endothelial cell recovery, acute thrombogenicity, and monocyte adhesion and activation on fluorinated copolymer and phosphorylcholine polymer stent coatings. Biomaterials 2010; 31: 648–657.
- 73Freitas SC, Cereija TB, Figueiredo AC, Osório H, Pereira PJ, Barbosa MA, Martins MC. Bioengineered surfaces to improve the blood compatibility of biomaterials through direct thrombin inactivation. Acta Biomater 2012; 8: 4101–4110.
- 74Yang ZL, Tu QF, Maitz MF, Zhou S, Wang J, Huang N. Direct thrombin inhibitor-bivalirudin functionalized plasma polymerized allylamine coating for improved biocompatibility of vascular devices. Biomaterials 2012; 33: 7959–7971.
- 75Waterhouse A, Wise SG, Yin YB, Wu BC, James B, Zreiqat H, McKenzie DR, Bao SS, Weiss AS, Ng MK, Bilek MM. In vivo biocompatibility of a plasma-activated, coronary stent coating. Biomaterials 2012; 33: 7984–7992.
- 76Rajendran S, Parikh D, Shugman I, French JK, Juergens CP. High on treatment platelet reactivity and stent thrombosis. Lung Circ 2011; 20: 525–531.
- 77Guasch E, Sionis A, Reverte JCr, Andrea R, Loma-Osorio P, Freixa X, Heras M. Safety issues of adjunctive clopidogrel in patients discharged after percutaneous coronary intervention with stent placement and requiring oral anticoagulation. Int J Cardiol 2011; 146: e1–e4.
- 78Woo YJ. Cardiac surgery in patients on antiplatelet and antithrombotic agents. Semi Thorac Cardiovasc Surg 2005; 17: 66–72.
- 79Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N. Dissecting the role of mTOR: Lessons from mTOR inhibitors. Biochim Biophys Acta 2010; 1804: 433–439.
- 80Simonton CA, Brodie B, Cheek B, Krainin F, Metzger C, Hermiller J, Juk S, Duffy P, Humphrey A, Nussbaum M, Sherry L. Comparative clinical outcomes of paclitaxel- and sirolimus-eluting stents: results from a large prospective multicenter registry—STENT group. J Am Coll Cardiol 2007; 50: 1214–1222.
- 81Caixeta A, Leon MB, Lansky AJ, Nikolsky E, Aoki J, Moses JW, Schofer J, Morice MC, Schampaert E, Kirtane AJ, Popma JJ, Parise H, Fahy M, Mehran R. 5-Year clinical outcomes after sirolimus-eluting stent implantation: insights from a patient-level pooled analysis of 4 randomized trials comparing sirolimus-eluting stents with bare-metal stents. J Am Coll Cardiol 2009; 54: 894–902.
- 82Suh JW, Park JS, Cho HJ, Kim MS, Kang HJ, Cho YS, Koo BK, Chung WY, Youn TJ, Chae IH, Choi DJ, Kim HS, Sohn DW, Oh BH, Park YB. Sirolimus-eluting stent showed better one-year outcomes than paclitaxel-eluting stent in a real life setting of coronary intervention in Koreans. Int J Cardiol 2007; 117: 31–36.
- 83Baber U, Mehran R, Sharma SK, Brar S, Yu J, Suh JW, Kim HS, Park SJ, Kastrati A, Waha A de, Krishnan P, Moreno P, Sweeny J, Kim MC, Suleman J, Pyo R, Wiley J, Kovacic J, Kini AS, Dangas JD. Impact of the everolimus-eluting stent on stent thrombosis: A meta-analysis of 13 randomized trials. J Am Coll Cardiol 2011;58: 1569–1577.
- 84Onuma Y, Kukreja N, Piazza N, Eindhoven J, Girasis C, Schenkeveld L, van Domburg R, Serruys PW, Interventional Cardiologists of the Thoraxcenter (2000 to 2007). The everolimus-eluting stent in real-world patients: 6-Month follow-up of the X-SEARCH (Xience V stent evaluated at Rotterdam Cardiac Hospital) registry. J Am Coll Cardiol 2009;54: 269–276.
- 85Stefanini GG, Serruys PW, Silber S, Khattab AA, van Geuns RJ, Richardt G, Buszman PE, Kelbæk H, van Boven AJ, Hofma SH, Linke A, Klauss V, Wijns W, Macaya C, Garot P, Mario CD, Manoharan G, Kornowski R, Ischinger T, Bartorelli AL. The impact of patient and lesion complexity on clinical and angiographic outcomes after revascularization with zotarolimus- and everolimus-eluting stents: A substudy of the RESOLUTE All Comers Trial (a randomized comparison of a zotarolimus-eluting stent with an everolimus-eluting stent for percutaneous coronary intervention). J Am Coll Cardiol 2011; 57: 2221–2232.
- 86Cassese S, Piccolo R, Galasso G, Rosa RD, Piscione F. Twelve-month clinical outcomes of everolimus-eluting stent as compared to paclitaxel- and sirolimus-eluting stent in patients undergoing percutaneous coronary interventions. A meta-analysis of randomized clinical trials. Int J Cardiol 2011; 150: 84–89.
- 87Kim JW, Seo HS, Park JH, Na JO, Choi CU, Lim HE, Kim EJ, Rha SW, Park CG, Oh DJ. A prospective, randomized, 6-month comparison of the coronary vasomotor response associated with a zotarolimus- versus a sirolimus-eluting stent: Differential recovery of coronary endothelial dysfunction. J Am Coll Cardiol 2009;53: 1653–1659.
- 88Leon MB, Mauri L, Popma JJ, Cutlip DE, Nikolsky E, O'Shaughnessy C, Overlie PA, McLaurin BT, Solomon SL, Douglas JS Jr, Michael W. Ball, Caputo RP, Ash Jain, Tolleson TR, Reen BM III, Kirtane AJ, Fitzgerald PJ, Thompson K, Kandzari DE; ENDEAVOR IV Investigators. A randomized comparison of the endeavor zotarolimus-eluting stent versus the TAXUS paclitaxel-eluting stent in de novo native coronary lesions: 12-Month outcomes from the ENDEAVOR IV trial. J Am Coll Cardiol 2010;55: 543–554.
- 89Park DW, Kim YH, Yun SC, Kang SJ, Lee SW, Lee CW, Park SW, Seong IW, Lee JH, Tahk SJ, Jeong MH, Jang Y, Cheong SS, Yang JY, Lim DS, Seung KB, Chae JK, Hur SH, Lee SG, Yoon J. Comparison of zotarolimus-eluting stents with sirolimus- and paclitaxel-eluting stents for coronary revascularization: The ZEST (comparison of the efficacy and safety of zotarolimus-eluting stent with sirolimus-eluting and paclitaxel-eluting stent for coronary lesions) randomized trial. J Am Coll Cardiol 2010; 56: 1187–1195.
- 90Klauss V, Serruys PW, Pilgrim T, Buszman P, Linke A, Ischinger T, Eberli F, Corti R, Wijns W, Morice MC, di Mario C, van Geuns RJ, van Es GA, Kalesan B, Wenaweser P, Jüni P, Windecker S. 2-Year clinical follow-up from the randomized comparison of biolimus-eluting stents with biodegradable polymer and sirolimus-eluting stents with durable polymer in routine clinical practice. JACC Cardiovasc Interv 2011; 4: 887–895.
- 91Schwalm JD, Ahmad M, Velianou JL, Pericak D, Natarajan MK. Long-term outcomes with paclitaxel-eluting stents versus bare metal stents in everyday practice: A Canadian experience. Can J Cardiol 2010; 26: e40–e44.
- 92Grube E, Schofer J, Hauptmann KE, Nickenig G, Curzen N, Allocco DJ, Dawkins KD. A novel paclitaxel-eluting stent with an ultrathin abluminal biodegradable polymer: 9-Month outcomes with the JACTAX HD stent. JACC Cardiovasc Interv 2010; 3: 431–438.
- 93Nakamura S, Ogawa H, Bae JH, Cahyadi YH, Udayachalerm W, Tresukosol D, Tansuphaswadikul S.TCT-5: Drug-eluting stents for the treatment of chronic total occlusion: A comparison with sirolimus, paclitaxel, zotarolimus (endeavor resolute), biolimusA9, EPC capture and everolimus-eluting stent: Multicenter registry in Asia. J Am Coll Cardiol 2011; 58: B2.
- 94Sandhu G, Doyle B, Singh R, Bell M, Bresnahan J, Mathew V, Holmes D, Lerman A, Frequency RC. Etiology, treatment, and outcomes of drug-eluting stent thrombosis during one year of follow-up. Am J Cardiol 2007; 99: 465–469.
- 95Trabattoni D, Bartorelli AL. Late occlusive in-stent restenosis of a bare-metal stent presenting with ST-elevation anterior MI: Is restenosis better than a late stent thrombosis? Int J Cardiol 2009; 135: e65–e67.
- 96Kim JW, Suh SY, Choi CU, Na JO, Kim EJ, Rha SW, Park CG, Seo HS, Oh DJ. Six-month comparison of coronary endothelial dysfunction associated with sirolimus-eluting stent versus paclitaxel-eluting stent. JACC Cardiovasc Interv 2008; 1: 65–71.
- 97Nakazawa G, Finn AV, Vorpahl M, Ladich ER, Kolodgie FD, Virmani R. Coronary responses and differential mechanisms of late stent thrombosis attributed to first-generation sirolimus- and paclitaxel-eluting stents. J Am Coll Cardiol 2011; 57: 390–398.
- 98Leong DP, Dundon BK, Puri R, Yeend RA. Very late stent fracture associated with a sirolimus-eluting stent. Lung Circ 2008; 17: 426–428.
- 99Kuriyama N, Kobayashi Y, Nakama T, Mine D, Nishihira K, Shimomura M, Nomura K, Ashikaga K, Matsuyama A, Shibata Y. Late restenosis following sirolimus-eluting stent implantation. JACC Cardiovasc Interv 2011; 4: 123–128.
- 100Sawada T, Shite J, Shinke T, Tanino Y, Ogasawara D, Kawamori H, Kato H, Miyoshi N, Yoshino N, Hirata KI. Very late thrombosis of sirolimus-eluting stent due to late malapposition: Serial observations with optical coherence tomography J Cardiol 2008; 52: 290–295.
- 101Slottow TL, Waksman R. Drug-eluting stent safety. Am J Cardiol 2007; 100: S10–S17.
- 102Lemesle G, Maluenda G, Collins SD, Waksman R. Drug-eluting stents: Issues of late stent thrombosis. Cardiol Clin 2010; 28: 97–105.
- 103Brodie B, Pokharel Y, Fleishman N, Bensimhon A, Kissling G, Hansen C, Milks S, Cooper M, McAlhany C, Stuckey T. Very late stent thrombosis after primary percutaneous coronary intervention with bare-metal and drug-eluting stents for st-segment elevation myocardial infarction: A 15-year single-center experience. JACC Cardiovasc Interv 2011; 4: 30–38.
- 104Flores-Ríos X, Abugattás-de Torres JP, Campo-Pérez R, Piñón-Esteban P, Aldama-López G, Salgado-Fernández J, Calviño-Santos R, Vázquez-Rodríguez JM, Vázquez-González N, Castro-Beiras A. Effect of stent thrombosis on the risk-benefit balance of drug-eluting stents and bare metal stents. Rev Esp Cardiol 2010; 63: 528–535.
- 105Enomoto K, Hasebe T, Asakawa R, Kamijo A, Yoshimoto Y, Suzuki T, Takahashi K, Hotta A. Controlling the drug release rate from biocompatible polymers with micro-patterned diamond-like carbon (DLC) coating. Diamond Res Mater 2010; 19: 806–813.
- 106Mani G, Chandrasekar B, Feldman MD, Patel D, Agrawal CM. Interaction of endothelial cells with self-assembled monolayers for potential use in drug-eluting coronary stents. J Biomed Mater Res Part B: Appl Biomater 2009; 90B: 789–801.
- 107Schulz C, Sibbing D, Braun S, Morath T, Mehilli J, Massberg S, Byrne RA, Schömig A, Kastrati A. Platelet response to clopidogrel and restenosis in patients treated predominantly with drug-eluting stents. Am Heart J 2010; 160: 355–361.
- 108Mehilli J, Byrne RA, Tiroch K, Pinieck S, e Schulz S, Kufner S, Massberg S, Laugwitz KL, Schömig A, Kastrati A. Randomized trial of paclitaxel- versus sirolimus-eluting stents for treatment of coronary restenosis in sirolimus-eluting stents: The ISAR-DESIRE 2 (intracoronary stenting and angiographic results: drug eluting stents for in-stent restenosis 2) study. J Am Coll Cardiol 2010;55: 2710–2716.
- 109Auer J, Leitner A, Berent R, Lamm G, Lassnig E, Krennmai G. Long-term outcomes following coronary drug-eluting- and bare-metal-stent implantation. Atherosclerosis 2010; 210: 503–509.
- 110Gott VL, Whiffen JD, Dutton RC. Heparin bonding on colloidal graphite surfaces. Science 1963; 142: 1297–1298.
- 111Young E. The anti-inflammatory effects of heparin and related compounds. Throm Res 2008; 122: 743–752.
- 112Christensen K, Larsson R, Emanuelsson H, Elgue G, Larsson A. Heparin coating of the stent graft—Effects on platelets, coagulation and complement activation. Biomaterials 2001; 22: 349–355.
- 113Gurbel PA, Bliden KP. Platelet activation after stenting with heparin-coated versus noncoated stents. Am Heart J 2003; 146: 691.
- 114Chen JL, Li QL, Chen JY, Chen C, Huang N. Improving blood-compatibility of titanium by coating collagen–heparin multilayers. Appl Surf Sci 2009; 255: 6894–6900.
- 115Meng S, Liu ZJ, Shen L, Guo Z, Chou LL, Zhong W, Du QG, Ge JB. The effect of a layer-by-layer chitosan–heparin coating on the endothelialization and coagulation properties of a coronary stent system. Biomaterials 2009; 30: 2276–2283.
- 116Li GC, Zhang FM, Liao YZ, Yang P, Huang N. Coimmobilization of heparin/fibronectin mixture on titanium surfaces and their blood. Colloids Surf B: Biointerfaces 2010; 81: 255–262.
- 117Zha ZB, Ma Y, Yue XL, Liu M, Dai ZF. Self-assembled hemocompatible coating on poly(vinyl chloride) surface. Appl Surf Sci 2009; 256: 805–814.
- 118Neuman Y, Rukshin V, Tsang V, Atar S, Miyamoto T, Luo H, Kobal S, Thompson T, Birnbaum Y, Horzewski M, Siegel RJ, Kaul S. An ex-vivo canine shunt study. Throm Res 2003; 112: 99–104.
- 119Christensen K, Larsson R, Emanuelsson H, Elgue G, Larsson A. Improved blood compatibility of a stent graft by combining heparin coating and abciximab. Throm Res 2005; 115: 245–253.
- 120Chuang TW, Masters KS. Regulation of polyurethane hemocompatibility and endothelialization by tethered hyaluronic acid oligosaccharides. Biomaterials 2009; 30: 5341–5351.
- 121Weng YJ, Jing FJ, Chen JY, Huang N. Construction of heparinylated multilayer films on Ti–O via streptavidin/biotin interaction. Appl Surf Sci 2012; 258: 5947–5954.
- 122Gong FR, Cheng XY, Wang SF, Zhao YC, Gao Y, Cai HB. Heparin-immobilized polymers as non-inflammatory and non-thrombogenic coating materials for arsenic trioxide eluting stents. Acta Biomater 2010; 6: 534–546.
- 123Begovac PC, Thomson RC, Fisher JL, Hughson A, Gallhagen A. Improvements in GORE-TEX vascular graft performance by Carmeda BioActive surface heparin immobilization. Eur J Vasc Endovasc Surg 2003; 25: 432–437.
- 124Vrolix MC, Legrand VM, Reiber JH, Grollier G, Schalij MJ, Brunel P. Heparin-coated Wiktor stents in human coronary arteries (MENTOR trial). Am J Cardiol 2000; 86: 385–389.
- 125Jordan SW, Chaikof LE. Novel thromboresistant materials. J Vasc Surg 2007; 45: A104–A115.
- 126Chin-Quee SL, Hsu SH, Nguyen-Ehrenreich KL, Tai JT, Abraham GM, Pacetti SD, Chan YF, Nakazawa G, Kolodgie FD, Virmani R, Ding NN,. Coleman LA. Endothelial cell recovery, acute thrombogenicity, and monocyte adhesion and activation on fluorinated copolymer and phosphorylcholine polymer stent coatings. Biomaterials 2010; 31: 648–657.
- 127Ye SH, Johnson CA Jr, Woolley JR, Oh HI, Gamble LJ, Kazuhiko Ishihara, Wagner WR. Surface modification of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance. Colloids Surf B: Biointerfaces 2009; 74: 96–102.
- 128Ye SH, Johnson CA Jr, Woolley JR, Murata H, Gamble LJ, Ishihara K, Wagner WR. Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity. Colloids Surf B: Biointerfaces 2010; 79: 357–364.
- 129Becker RC. Novel constructs for thrombin inhibition. Am Heart J 2005; 149: S61–S72.
- 130Szlam F, Luan D, Bolliger D, Szlam AD, Levy JH, Varner JD, Tanaka KA. Anti-factor IXa aptamer reduces propagation of thrombin generation in plasma anticoagulated with warfarin. Throm Res 2010; 125: 432–437.
- 131Rathore S, Kinoshita Y, Terashima M, Katoh O, Tanaka N, Kimura M, Tsuchikane E, Nasu K, Ehara M, Asakura K, Asakura Y, Suzuki T. Sirolimus eluting stent restenosis: Impact of angiographic patterns and the treatment factors on angiographic outcomes in contemporary practice. Int J Cardiol 2011; 146: 390–394.
- 132Nilsson PH, Engberg AE, Bäck J, Faxälv L, Lindahl TL, Nilsson B, Ekdahl KN. The creation of an antithrombotic surface by apyrase immobilization. Biomaterials 2010; 31: 4484–4491.
- 133Paderi JE, Stuart K, Sturek M, Park K, Panitch A. The inhibition of platelet adhesion and activation on collagen during balloon angioplasty by collagen-binding peptidoglycans. Biomaterials 2011; 32: 2516–2523.
- 134Rondeau P, Bourdon E. The glycation of albumin: Structural and functional impacts. Biochimie 2011; 93: 645–658.
- 135Maalej N, Albrecht R, Loscalzo J, Folts JD. The potent platelet inhibitory effects of S-nitrosated albumin coating of artificial surfaces. J Am Coll Cardiol 1999; 33: 1408–1414.
- 136Khan W, Kapoor M, Kumar N. Covalent attachment of proteins to functionalized polypyrrole-coated metallic surfaces for improved biocompatibility. Acta Biomater 2007; 3: 541–549.
- 137Woodhouse KA, Klement P, Chen V, Gorbet MB, Keeley FW, Stahl R, Fromstein JD, Bellingham CM. Investigation of recombinant human elastin polypeptides as non-thrombogenic coatings. Biomaterials 2004; 25: 4543–4553.
- 138Blit PH, McClung WG, Brash JL, Woodhouse KA, Santerre JP. Platelet inhibition and endothelial cell adhesion on elastin-like polypeptide surface modified materials. Biomaterials 2011; 32: 5790–5800.
- 139Major TC, Brant DO, Reynolds MM, Bartlett RH, Meyerhoff ME, Handa H, Annich GM. The attenuation of platelet and monocyte activation in a rabbit model of extracorporeal circulation by a nitric oxide releasing polymer. Biomaterials 2010; 32: 2736–2745.
- 140Fleser PS, Nuthakki VK, Malinzak LE, Callahan RE, Seymour ML, Reynolds MM, Merz SI, Meyerhoff ME, Bendick PJ, Zelenock GB, Shanley CJ. Nitric oxide-releasing biopolymers inhibit thrombus formation in a sheep model of arteriovenous bridge grafts. J Vasc Surg 2004; 40: 803–811.
- 141Garcia-Touchard A, Burke SE, Toner JL, Cromack K. Schwartz RS. Zotarolimus-eluting stents reduce experimental coronary neointimal hyperplasia after 4 weeks. Eur Heart J 2006; 27: 988–993.
- 142Chevalier B, Mario CD, Neumann FJ, Ribichini F, Urban P, Popma JJ, Fitzgerald PJ, Cutlip DE. Williams DO, Ormiston J, Grube E, Whitbourn R, Schwartz LB, ZoMaxx I Investigators. A randomized, controlled, multicenter trial to evaluate the safety and efficacy of zotarolimus- versus paclitaxel-eluting stents in de novo occlusive lesions in coronary arteries: The ZoMaxx I trial. JACC Cardiovasc Interv 2008; 1: 524–532.
- 143Jordan SW, Chaikof EL. Novel thromboresistant materials. J Vasc Surg 2007; 45: A104–A115.
- 144Peters S, Koehler B, Steffen H, Rählert-Sommer A, Selbig D, Trümmel M. Late lumen loss and follow-up percent diameter stenosis at different doses of oral valsartan six months after bare-metal stent implantation in type B2/C coronary lesions. Int J Cardiol 2010; 142: 29–32.
- 145Tanous D, Bräsen JH, Choy K, Wu BJ, Kathir K, Lau A, Celermajer DS, Stocker R. Probucol inhibits in-stent thrombosis and neointimal hyperplasia by promoting re-endothelialization. Atherosclerosis 2006; 189: 342–349.
- 146Gu Z, Rolfe BE, Xu ZP, Thomas AC, Campbell JH, Lu GQ. Enhanced effects of low molecular weight heparin intercalated with layered double hydroxide nanoparticles on rat vascular smooth muscle cells. Biomaterials 2010; 31: 5455–5462.
- 147Cherian S, Sebastian C, Puri A, Liang M, Ten YL, Devlin G.AS-167: Drug-eluting stents in the treatment of in-stent restenosis. Am J Cardiol 2010; 105: 71A.
10.1016/j.amjcard.2010.01.214 Google Scholar
- 148Wessely R. New drug-eluting stent concepts. Nat Rev Cardiol 2010; 7: 194–203.
- 149Liistro F, Fineschi M, Grotti S, Angioli P, Carrera A, Ducci K, Gori T, Falsini G, Pierli C, Bolognese L. Long-term effectiveness and safety of sirolimus stent implantation for coronary in-stent restenosis results of the TRUE (Tuscany Registry of sirolimus for unselected in-stent restenosis) registry at 4 years. J Am Coll Cardiol 2010; 55: 613–616.
- 150Esteves V, Centemero MP, Abizaid A, Costa R, Costa JR, Grube E, Tavares S, Gama G, Staico R, Feres F, Sousa AG, Sousa E.TCT-393: Five-year clinical results of the biolimus a9 eluting stent with biodegradable polymer. Am J Cardiol 2009; 104: 146D.
- 151Simsek C, Magro M, Boersma E, Onuma Y, Nauta ST, Gaspersz MP, van der Giessen WJ, van Domburg RT, Serruys PW. The Unrestricted Use Of Sirolimus- And Paclitaxel-Eluting Stents Results In Better Clinical Outcomes During 6-Year Follow-Up Than Bare-Metal Stents: An Analysis Of The RESEARCH (Rapamycin-Eluting Stent Evaluated At Rotterdam Cardiology Hospital) And T-SEARCH (Taxus–Stent Evaluated At Rotterdam Cardiology Hospital) registries. JACC Cardiovasc Interv 2010; 3: 1051–1058.
- 152Celik T, Iyisoy A, Kursaklioglu H, Celik M. The forgotten player of in-stent restenosis: Endothelial dysfunction. Int J Cardiol 2008; 126: 443–444.
- 153Serruys PW, Ormiston JA, Sianos G, Sousa JE, Grube E, r den Heijer P, de Feyter P, Buszman P, Schömig A, Marco J, Polonski L, Thuesen L, Zeiher AM, Bett JH, Suttorp MJ, Glogar HD, Pitney M, Wilkins GT, Whitbourn R, Veldhof S. Actinomycin-eluting stent for coronary revascularization: A randomized feasibility and safety study: The ACTION trial. J Am Coll Cardiol 2004; 44: 1363–1367.
- 154Verheye S, Agostoni P, Dawkins KD, Dens J, Rutsch W, Carrie D, Schofer J, Lotan C, Dubois CL, Cohen SA, Fitzgerald PJ, Lansky AJ. The GENESIS (randomized, multicenter study of the pimecrolimus-eluting and pimecrolimus/paclitaxel-eluting coronary stent system in patients with de novo lesions of the native coronary arteries) trial. JACC Cardiovasc Interv 2009; 2: 205–214.
- 155John MC, Wessely R, Kastrati A, Schömig A, Joner M, Uchihashi M, Crimins J, Lajoie S, Kolodgie FD, Gold HK, Virmani R, Finn AV. Differential healing responses in polymer- and nonpolymer-based sirolimus-eluting stents. JACC Cardiovasc Interv 2008; 1: 535–544.
- 156Ma XD, Oyamada S, Gao F, Wu T, Robich MP, Wu H, Wang XW, Buchholz B, McCarthy S, Gu ZY, Bianchi CF, Sellke FW, Laham R. Paclitaxel/sirolimus combination coated drug-eluting stent: In vitro and in vivo drug release studies. J Pharm Biomed Anal 2011; 54: 807–811.
- 157Huang YY, Venkatraman SS, Boey, Lahti FM, Umashankar PR, Mohanty M, Arumugam S, Khanolkar L, Vaishnav S. In vitro and in vivo performance of a dual drug-eluting stent (DDES). Biomaterials 2010; 31: 4382–4391.
- 158Yang J, Zeng Y, Zhang C, Chen YX, Yang ZY, Li YJ, Leng XG, Kong DL, Wei XQ, Sun HF, Song CX. The prevention of restenosis in vivo with a VEGF gene and paclitaxel co-eluting stent. Biomaterials 2013;34: 1635–1643.
- 159Tamburino C, Ussia GP, Zimarino M, Galassi AR, Caterina RD. Early restenosis after drug-eluting stent implantation: A putative role for platelet activation. Can J Cardiol 2007; 23: 57–59.
- 160Steinberg DH, Gaglia MA Jr, MSc, Slottow TL, Roy P, Bonello L, Labriolle AD, Lemesle G, Torguson R, Kineshige K, Xue ZY, Suddath WO, Kent KM, Satler LF, Pichard AD, Lindsay J, Waksman R. Outcome differences with the use of drug-eluting stents for the treatment of in-stent restenosis of bare-metal stents versus drug-eluting stents. Am J Cardiol 2009; 103: 491–495.
- 161Moreno R. Stents recubiertos y otros dispositivos antirreestenosis. Rev Esp Cardiol 2005; 58: 842–862.
- 162Kalińczuk L, Demkow M, Mintz GS, Cedro K, Dębski A, Ciszewski M, Ciszewski A, Kruk M, Karcz M, Warmiński G, Pręgowski J, Chmielak Z, Witkowski A, Lubiszewska B, yłło WR. Impact of different re-stenting strategies on expansion of a drug-eluting stent implanted to treat bare-metal stent restenosis. Am J Cardiol 2009; 104: 531–537.
- 163Dangas GD, Claessen BE, Caixeta A, Sanidas EA, Mintz GS, Mehran R. In-stent restenosis in the drug-eluting stent era. J Am Coll Cardiol 2010;56: 1897–1907.
- 164Byrne R, Iijima R, Mehilli J, Pache J, Schulz S, Schömig A, Kastrat A. Tratamiento de la reestenosis de stents liberadores de paclitaxel mediante implantación de stents liberadores de sirolimus. Resultados angiográficos y clinicos. Rev Esp Cardiol (English Ed) 2008; 61: 1134–1139.
- 165Morton AC, Crossman D, Gunn J. The influence of physical stent parameters upon restenosis. Pathol Biol 2004; 52: 196–205.
- 166Chen M, Osaki S, Zamora PO. Biological response of stainless steel surface modified by N2O/O2 glow discharge plasma. Appl Surf Sci 2009; 255: 7257–7262.
- 167Shen Y, Wang GX, Chen L, Li H, Yu P, Bai M, Zhang Q, Lee J, Yu QS. Investigation of surface endothelialization on biomedical nitinol (NiTi) alloy: Effects of surface micropatterning combined with plasma nanocoatings. Acta Biomater 2009; 5: 3593–3604.
- 168Thierry B, Winnik FM, Merhi Y, Silver J, Tabrizian M. Radionuclides-hyaluronan-conjugate thromboresistant coatings to prevent in-stent restenosis. Biomaterials 2004; 25: 3895–3905.
- 169Diletti R, Onuma Y, Farooq V, Gomez-Lara J, Brugaletta S, Geuns RJ, Regar E, Bruyne Bd, Dudek D, Thuesen L, Chevalier B, McClean D, Windecker S, Whitbourn R, Smits P, Koolen J, Meredith I, Li D, Veldhof S, Rapoza R, Garcia-Garcia HM, Ormiston JA, Serruys PW. 6-Month clinical outcomes following implantation of the bioresorbable everolimus-eluting vascular scaffold in vessels smaller or larger than 2.5 mm. J Am Coll Cardiol 2011;58: 258–264.
- 170Zilberman M. Dexamethasone loaded bioresorbable films used in medical support devices: Structure, degradation, crystallinity and drug release. Acta Biomater 2005; 1: 615–624.
- 171Bourantas CV, Onuma Y, Farooq V, Zhang YJ, Garcia-Garcia HM, Serruys PW. Bioresorbable scaffolds: Current knowledge, potentialities and limitations experienced during their first clinical applications. Int J Cardiol 2013; 167: 11–21.
- 172Tellez A, Peppas A, Conditt G, Yi GH, McGregor J, Virmani R, Granada J, Kaluza G. Very long-term (1 and 2-year) comparison of bioresorbable vs. permanent polymer limus-eluting stents in a porcine coronary artery model. J Am Coll Cardiol 2012; 59: E223.
- 173S Brugaletta, J Gomez-Lara, PW Serruys, V Farooq, RJ Geuns, L Thuesen, D Dudek, J Koolen, B Chevalier, D McClean, S Windecker, PC Smits, Bd Bruyne, R Whitbourn, I Meredith, RT Domburg, K Sihan, Sd Winter, S Veldhof, K Miquel-Hebert, Rapoza R, Garcia-Garcia HM, Ormiston JA, Bruining N. Serial in vivo intravascular ultrasound-based echogenicity changes of everolimus-eluting bioresorbable vascular scaffold during the first 12 months after implantation: Insights from the ABSORB B trial. JACC Cardiovasc Interv 2011;4: 1281–1289.
- 174Rao VD. Bioresorbable stents—Ready for primetime? JICC 2011; 1: 61–63.
- 175Dimopoulos DJ, Langner RO. Inhibition of phosphodiesterase has an additive effect on estrogen's ability to inhibit collagen synthesis in vascular smooth muscle cells. Vascul Pharmacol 2009; 50: 78–82.
- 176Lenfant F, Trémollières F, Gourdy P, Arnal JF. Timing of the vascular actions of estrogens in experimental and human studies: Why protective early, and not when delayed? Maturitas 2011; 68: 165–173.
- 177Kyriakides ZS, Lymberopoulos E, Papalois A, Kyrzopoulos S, Dafnomili V, Sbarouni E, Kremastinos DT. Estrogen decreases neointimal hyperplasia and improves re-endothelialization in pigs. Int J Cardiol 2006; 113: 48–53.
- 178Celik T, Iyisoy A, Kursaklioglu H, Ceyhan ST, Yuksel UC. An effective vascular-healing agent after coronary stent implantation: Estrogen. Int J Cardiol 2007; 118: 116–117.
- 179Abizaid A, Albertal M, Costa MA, Abizaid AS, Staico R, Feres F, Mattos LA, Sousa AG, Moses J, Kipshidize N, Roubin GS, Mehran R, New G, Leon MB, Sousa JE. First human experience with the 17-beta-estradiol-eluting stent: The estrogen and stents to eliminate restenosis (EASTER) trial. J Am Coll Cardiol 2004; 43: 1118–1121.
- 180Hughes AD, Clunn GF, Refson J, Demoliou-Mason C. Platelet-derived growth factor (PDGF): Actions and mechanisms in vascular smooth muscle. Gen Pharmacol 1996; 27: 1079–1089.
- 181Jandt E, Mutschke O, Mahboobi S, Uecker A, Platz R, Berndt A, Böhmer FD, Figulla HR, Werner GS. Stent-based release of a selective PDGF-receptor blocker from the bis-indolylmethanon class inhibits restenosis in the rabbit animal model. Vasc Pharm 2010; 52: 55–62.
- 182Getachew R, Ballinger ML, Burch ML, Little PJ, Osman N. Characterisation of Ki11502 as a potent inhibitor of PDGF β receptor-mediated proteoglycan synthesis in vascular smooth muscle cells. Eur J Pharm 2010; 626: 186–192.
- 183Zohlnhöfer D, Hausleiter J, Kastrati A, Mehilli J, Goos C, Schühlen H, Pache J, Pogatsa-Murray G, Heemann U, Dirschinger J, Schömig A. A randomized, double-blind, placebo-controlled trial on restenosis prevention by the receptor tyrosine kinase inhibitor imatinib. J Am Coll Cardiol 2005;46: 1999–2003.
- 184Liang KW, Yin SC, Ting CT, Lin SJ, Hsueh CM, Chen CY, Hsu SL. Berberine inhibits platelet-derived growth factor-induced growth and migration partly through an AMPK-dependent pathway in vascular smooth muscle cells. Eur J Pharm 2008; 590: 343–354.
- 185Stocum DL. 12-Regenerative medicine of hematopoietic and cardiovascular tissues. Regene Biol Med 2006: 305–335.
10.1016/B978-012369371-6/50029-0 Google Scholar
- 186Glotzbach JP, Wong VW, Gurtner GC, Longaker MT. Regenerative medicine. Curr Probl Surg 2011; 48: 148–212.
- 187Hill KL, Obrtlikova P, Alvarez DF, King JA, Keirstead SA, Allred JR, Kaufman DS. Human embryonic stem cell−derived vascular progenitor cells capable of endothelial and smooth muscle cell function. Exp Hematol 2010; 38: 246–257.
- 188Murata M, Tohyama S, Fukuda K. Impacts of recent advances in cardiovascular regenerative medicine on clinical therapies and drug discovery. Pharmacol Ther 2010; 126: 109–118.
- 189Santourlidis S, Wernet P, Ghanjati F, Graffmann N, Springer J, Kriegs C, Zhao XY, Brands J, Araúzo-Bravo MJ, Neves R, Koegler G, Uhrberg M. Unrestricted somatic stem cells (USSC) from human umbilical cord blood display uncommitted epigenetic signatures of the major stem cell pluripotency genes. Stem Cell Res 2011; 6: 60–69.
- 190Zammaretti P, Zisch AH. Adult ‘endothelial progenitor cells’: Renewing vasculature. Int J Biochem Cell B 2005; 37: 493–503.
- 191Chen YC, Tsai KL, Hung CW, Ding DC, Chen LH, Chang YL, Chen LK, Chiou SH. Induced pluripotent stem cells and regenerative medicine. JCGG 2011; 2: 1–6.
- 192G.T.-J. Huang. Induced pluripotent stem cells—A new foundation in medicine. J Exp Clin Med 2010; 2: 202–217.
- 193Li MR, Chen MX, Han WD, Fu XB. How far are induced pluripotent stem cells from the clinic? Ageing Res Rev 2010; 9: 257–264.
- 194Boyd AS, Higashi Y, Wood KJ. Transplanting stem cells: Potential targets for immune attack. Modulating the immune response against embryonic stem cell transplantation. Adv Drug Deliv Rev 2005;57: 1944–1969.
- 195Anitua E, Sánchez M, Orive G. Potential of endogenous regenerative technology for in situ regenerative medicine. Adv Drug Deliv Rev 2010; 62: 741–752.
- 196Liu PX, Zhou B, Gu DS. Zhdged sword? Ageing Res Rev 2009; 8: 83–93.
- 197Koren B, Weisz A, Fischer L, Gluzmana Z, Preis M, Avramovitch N, Cohen T, Cosset FL, Lewis BS, Flugelman MY. Efficient transduction and seeding of human endothelial cells onto metallic stents using bicistronic pseudo-typed retroviral vectors encoding vascular endothelial growth factor. Cardiovasc Revasc Med 2006; 7: 173–178.
- 198Hristov M, Weber C. Endothelial progenitor cells in vascular repair and remodeling. Pharm Res 2008; 58: 148–151.
- 199Scott NA, Candal FJ, Robinson KA, Ades EW. Seeding of intracoronary stents with immortalized human microvascular endothelial cells. Am Heart J 1995; 129: 860–866.
- 200McGuigan AP, Sefton MV. The influence of biomaterials on endothelial cell thrombogenicity. Biomaterials 2007; 28: 2547–2571.
- 201Noll G. Pathogenesis of atherosclerosis: A possible relation to infection. Atherosclerosis 1998; 140: S3–S9.
- 202Shantsila E, Watson T, Lip GY. Endothelial progenitor cells in cardiovascular disorders. J Am Coll Cardiol 2007; 49: 741–752.
- 203Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964–967.
- 204Finney MR, Greco NJ, Haynesworth SE, Martin JM, Hedrick DP, Swan JZ, Winter DG, Kadereit S, Joseph ME, Fu PF, Pompili VJ, Laughlin MJ. Direct comparison of umbilical cord blood versus bone marrow–derived endothelial precursor cells in mediating neovascularization in response to vascular ischemia. Biol Blood Marrow Transplant 2006; 12: 585–593.
- 205Wu HK, Riha GM, Yang H, Li M, Yao QZ, Chen CY. Differentiation and proliferation of endothelial progenitor cells from canine peripheral blood mononuclear cells. J Surg Res 2005; 126: 193–198.
- 206Pacilli A, Pasquinelli G. Vascular wall resident progenitor cells: A review. Exp Cell Res 2009; 315: 901–914.
- 207Doyle B, Caplice N. A new source of endothelial progenitor cells—Vascular biology redefined? Trends Biotechnol 2005; 23: 444–446.
- 208Krenning G, van Luyn MJ, Harmsen MC. Endothelial progenitor cell-based neovascularization: Implications for therapy. Trends Mol Med 2009; 15: 182–183.
- 209Bu XF, Yan YL, Zhang ZJ, Gu XC, Wang MB, Gong AH, Sun XL, Cui YH, Zeng YJ. Properties of extracellular matrix-like scaffolds for the growth and differentiation of endothelial progenitor cells. J Surg Res 2010; 164: 50–57.
- 210Pearson JD. Endothelial progenitor cells—An evolving story. Microvasc Res 2010; 79: 162–168.
- 211Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007;109: 1801–1809.
- 212Lapergue B, Mohammad A, Shuaib A. Endothelial progenitor cells and cerebrovascular diseases. Prog Neurobiol 2007; 83: 351.
- 213Pober JS. Just the FACS or stalking the elusive circulating endothelial progenitor cell. Arterioscler Thromb Vasc Biol 2012; 32: 837–838.
- 214Tura O, Skinner EM, Barclay GR, Samuel K, Gallagher RC, Brittan M, Hadoke PW, Newby DE, Turner ML, Mills NL. Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells 2013; 31: 338–348.
- 215Palmaz JC, Benson A, Sprague EA. Influence of surface topography on endothelialization of intravascular metallic material. J Vasc Interv Radiol 1999; 10: 439–444.
- 216Lu J, Rao MP, MacDonald NC, Khang D, Webster TJ. Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Acta Biomater 2008; 4: 192–201.
- 217Uttayarat P, Toworfe GK, Dietrich F, Lelkes PI, Composto RJ. Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions. J Biomed Mater Res A 2005; 75A: 668–680.
- 218Liliensiek SJ, Wood JA, Yong J, Auerbach R, Nealey PF, Murphy CJ. Modulation of human vascular endothelial cell behaviors by nanotopographic cues. Biomaterials 2010; 31: 5418–5426.
- 219Uttayarat P, Chen M, Li M, Allen FD, Composto RJ, Lelkes PI. Microtopography and flow modulate the direction of endothelial cell migration. Am J Physiol Heart C 2008; 294: H1027–H1035.
- 220Formosa F, Anfuso CD, Satriano C, Lupo G, Giurdanella G, Ragusa N, Marletta G, Alberghina M. UV-O3-treated and protein-coated polymer surfaces facilitate endothelial cell adhesion and proliferation mediated by the PKCα/ERK/cPLA2 pathway. Microvasc Res 2008;75: 330–342.
- 221Chen JY, Leng YX, Zhang X, Yang P, Sun H, Wang J, Wan GJ, Zhao AS, Huang N, Chu PK. Effect of tantalum content of titanium oxide film fabricated by magnetron sputtering on the behavior of cultured human umbilical vein endothelial cells (HUVEC). Nucl Instrum Methods B 2006; 242: 26–29.
- 222Chen JY, Zhang X, Wan GJ, Leng YX, Sun H, Yang P, Wang J, Zhao AS, Huang N. Effect of hydrogen on the behavior of cultured human umbilical vein endothelial cells (HUVEC) on titanium oxide films fabricated by plasma immersion ion implantation and deposition. Surf Coat Technol 2007; 201: 8140–8145.
- 223Achneck HE, Jamiolkowski RM, Jantzen AE, Haseltine JM, Lane WO, Huang JK, Galinat LJ, Serpe MJ, Lin FH, Li M, Parikh A, Ma L, Chen T, Sileshi B, Milano CA, Wallace CS, Stabler TV, Allen JD, Truskey GA, Lawson JH. The biocompatibility of titanium cardiovascular devices seeded with autologous blood-derived endothelial progenitor cells: EPC-seeded antithrombotic Ti implants. Biomaterials 2011; 32: 10–18.
- 224Shirota T, Yasui H, Shimokawa H, Matsuda T. Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials 2003; 24: 2295–2302.
- 225Ye XF, Hu X, Wang HZ, Liu J, Zhao Q. Polyelectrolyte multilayer film on decellularized porcine aortic valve can reduce the adhesion of blood cells without affecting the growth of human circulating progenitor cells. Acta Biomater 2012; 8: 1057–1067.
- 226Jantzen AE, Lane WO, Gage SM, Jamiolkowski RM, Haseltine JM, Galinat LJ, Lin FH, Lawson JH, Truskey GA, Achneck HE. Use of autologous blood-derived endothelial progenitor cells at point-of-care to protect against implant thrombosis in a large animal model. Biomaterials 2011; 32: 8356–8363.
- 227Wacker BK, Alford SK, Scott EA, Thakur MD, Longmore GD, Elbert DL. Endothelial cell migration on RGD-peptide-containing PEG hydrogels in the presence of sphingosine 1-phosphate. Biophys J 2008; 94: 273–285.
- 228Poh CK, Shi ZL, Lim TY, Neoh KG, Wang W. The effect of VEGF functionalization of titanium on endothelial cells in vitro. Biomaterials 2010; 31: 1578–1585.
- 229Chen JL, Cao JJ, Wang J, Maitz MF, Guo L, Zhao YZ, Li QL, Xiong KQ, Huang N. Biofunctionalization of titanium with PEG and anti-CD34 for hemocompatibility and stimulated endothelialization. J Colloid Interface Sci 2012; 368: 636–647.
- 230Schmitt CA, Dirsch VM. Modulation of endothelial nitric oxide by plant-derived products. Nitric Oxide 2009; 21: 77–91.
- 231Brüne B. Nitric oxide: A short lived molecule stays alive. Pharm Res 2010; 61: 265–268.
- 232Carreau A, Kieda C, Grillon C. Nitric oxide modulates the expression of endothelial cell adhesion molecules involved in angiogenesis and leukocyte recruitment. Exp Cell Res 2011; 317: 29–41.
- 233Taite LJ, Yang P, Jun HW, West JL. Nitric oxide-releasing polyurethane–PEG copolymer containing the YIGSR peptide promotes endothelialization with decreased platelet adhesion. J Biomed Mater Res Part B: Appl Biomater 2008; 84 B: 108–116.
- 234Kapadia MR, Chow LW, Tsihlis ND, Ahanchi SS, Eng JW, Murar J, Martinez J, Popowich DA, Jiang Q, Hrabie JA, Saavedra JE, Keefer LK, Hulvat JF, Stupp SI, Kibbe MR. Nitric oxide and nanotechnology: A novel approach to inhibit neointimal hyperplasia. J Vasc Surg 2008; 47: 173–182.
- 235Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials 2007; 28: 3587–3593.
- 236Chen ZG, Wang PW, Wei B, Mo XM, Cui FZ. Electrospun collagen–chitosan nanofiber: A biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomater 2010; 6: 372–382.
- 237Bax DV, McKenzie DR, Weiss AS, Bilek MM. The linker-free covalent attachment of collagen to plasma immersion ion implantation treated polytetrafluoroethylene and subsequent cell-binding activity. Biomaterials 2010; 31: 2526–2534.
- 238Bax DV, McKenzie DR, Weiss AS, Bilek MM. Linker-free covalent attachment of the extracellular matrix protein tropoelastin to a polymer surface for directed cell spreading. Acta Biomater 2009; 5: 3371–3381.
- 239Padfield GJ, DE Newby, NL Mills. Understanding the role of endothelial progenitor cells in percutaneous coronary intervention. J Am Coll Cardiol 2010; 55: 1553–1565.
- 240Yin M, Yuan Y, Liu CS, Wang J. Combinatorial coating of adhesive polypeptide and anti-CD34 antibody for improved endothelial cell adhesion and proliferation. J Mater Sci: Mater Med 2009; 20: 1513–1523.
- 241Wendel HP, Avci-Adali M, Ziemer G. Endothelial progenitor cell capture stents—Hype or hope? Int J Cardiol 2010; 145: 115–117.
- 242Klomp M, Beijk MA, Koch KT, Henriques JP, Baan J, Vis MM, Tijssen JG, Piek JJ, de Winter RJ. Long-term clinical outcome of a real world experience in patients treated with a genoustm EPC capturing stent. J Am Coll Cardiol 2010;55:A180.E1683.
- 243Hermann T, Patel DJ. Adaptive recognition by nucleic acid aptamers. Science 2000; 287: 820–825.
- 244Avci-Adali M, Paul A, Ziemer G, Wendel HP. New strategies for in vivo tissue engineering by mimicry of homing factors for self-endothelialisation of blood contacting materials. Biomaterials 2008; 29: 3936–3945.
- 245Chen FM, Wu LA, Zhang M, Zhang R, Sun HH. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives. Biomaterials 2011; 32: 3189–3209.
- 246Aoki J, Serruys PW, van Beusekom H L., Ong AT, McFadden EP, Sianos G, van der Giessen WJ, Regar E, de Feyter PJ, Davis HR, Rowland S, Kutryk MJ. Endothelial progenitor cell capture by stents coated with antibody against CD34: The HEALING-FIM (healthy endothelial accelerated lining inhibits neointimal growth-first in man) registry. J Am Coll Cardiol 2005; 45: 1574–1579.
- 247Rossi ML, Zavalloni D, Gasparini GL, Mango R, Belli G, Presbitero P. The first report of late stent thrombosis leading to acute myocardial infarction in patient receiving the new endothelial progenitor cell capture stent. Int J Cardiol 2010; 141: e20–e22.
- 248Lee YK, Park JH, Moon HT, Lee DY, Yun JH, Byun Y. The short-term effects on restenosis and thrombosis of echinomycin-eluting stents topcoated with a hydrophobic heparin-containing polymer. Biomaterials 2007; 28: 1523–1530.
- 249Cho HH, Han DW, Matsumura K, Tsutsumi S, Hyon SH. The behavior of vascular smooth muscle cells and platelets onto epigallocatechin gallate-releasing poly(l-lactide-co-ε-caprolactone) as stent-coating materials. Biomaterials 2008; 29: 884–893.
- 250Ren JR, Wang J, Sun H, Huang N. Surface modification of polyethylene terephthalate with albumin and gelatin for improvement of anticoagulation and endothelialization. Appl Surf Sci 2008; 255: 263–266.
- 251Waterhouse A, Yin Y, Wise SG, Bax DV, McKenzie DR, Bilek MM, Weiss AS, Martin KC. The immobilization of recombinant human tropoelastin on metals using a plasma-activated coating to improve the biocompatibility of coronary stents. Biomaterials 2010; 31: 8332–8340.
- 252Larsen CC, Kligman F, Tang C, Kottke-Marchant K, Marchant RE. A biomimetic peptide fluorosurfactant polymer for endothelialization of ePTFE with limited platelet adhesion. Biomaterials 2007; 28: 3537–3548.
- 253Lord MS, Yu WY, Cheng B, Simmons A, Poole-Warren L, Whitelock JM. The modulation of platelet and endothelial cell adhesion to vascular graft materials by perlecan. Biomaterials 2009; 30: 4898–4906.
- 254Xue XQ, Wang J, Zhu Y, Tu QF, Huang N. Biocompatibility of pure titanium modified by human endothelial cell-derived extracellular matrix. Appl Surf Sci 2010; 256: 3866–3873.
- 255Li GC, Yang P, Qin W, Maitz MF, Zhou S, Huang N. The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization. Biomaterials 2011; 32: 4691–4703.
- 256De Visscher G, Mesure L, Meuris B, Ivanova A, Flameng W. Improved endothelialization and reduced thrombosis by coating a synthetic vascular graft with fibronectin and stem cell homing factor SDF-1α. Acta Biomater 2012; 8: 1330–1338.
- 257Kushwaha M, Anderson JM, Bosworth CA, Andukuri A, Minor WP, Lancaster JR, Anderson PG, Brott BC, Jun HW. A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices. Biomaterials 2010; 31: 1502–1508.
- 258Weng YJ, Song Q, Zhou YJ, Zhang LP, Wang J, Chen JY, Leng YX, Li SY, Huang N. Immobilization of selenocystamine on TiO2 surfaces for in situ catalytic generation of nitric oxide and potential application in intravascular stents. Biomaterials 2011; 32: 1253–1263.