A new generation of bio-derived ceramic materials for medical applications
Corresponding Author
P. González
Departamento de Física Aplicada, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
Departamento de Física Aplicada, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, SpainSearch for more papers by this authorJ. P. Borrajo
Departamento de Física Aplicada, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
Search for more papers by this authorJ. Serra
Departamento de Física Aplicada, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
Search for more papers by this authorS. Chiussi
Departamento de Física Aplicada, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
Search for more papers by this authorB. León
Departamento de Física Aplicada, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
Search for more papers by this authorJ. Martínez-Fernández
Departamento de Física de la Materia Condensada-ICMSE, University of Seville, Av. Reina Mercedes, Seville, Spain
Search for more papers by this authorF. M. Varela-Feria
Departamento de Física de la Materia Condensada-ICMSE, University of Seville, Av. Reina Mercedes, Seville, Spain
Search for more papers by this authorA. R. de Arellano-López
Departamento de Física de la Materia Condensada-ICMSE, University of Seville, Av. Reina Mercedes, Seville, Spain
Search for more papers by this authorA. de Carlos
Departamento de Bioquímica, Genética e Inmunología, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
Search for more papers by this authorF. M. Muñoz
Departamento de Ciencias Clínicas Veterinarias, University of Santiago de Compostela, Facultad de Veterinaria, Lugo, Spain
Search for more papers by this authorM. López
Departamento de Ciencias Clínicas Veterinarias, University of Santiago de Compostela, Facultad de Veterinaria, Lugo, Spain
Search for more papers by this authorM. Singh
Ohio Aerospace Institute, NASA Glenn Research Center, Cleveland, Ohio
Search for more papers by this authorCorresponding Author
P. González
Departamento de Física Aplicada, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
Departamento de Física Aplicada, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, SpainSearch for more papers by this authorJ. P. Borrajo
Departamento de Física Aplicada, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
Search for more papers by this authorJ. Serra
Departamento de Física Aplicada, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
Search for more papers by this authorS. Chiussi
Departamento de Física Aplicada, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
Search for more papers by this authorB. León
Departamento de Física Aplicada, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
Search for more papers by this authorJ. Martínez-Fernández
Departamento de Física de la Materia Condensada-ICMSE, University of Seville, Av. Reina Mercedes, Seville, Spain
Search for more papers by this authorF. M. Varela-Feria
Departamento de Física de la Materia Condensada-ICMSE, University of Seville, Av. Reina Mercedes, Seville, Spain
Search for more papers by this authorA. R. de Arellano-López
Departamento de Física de la Materia Condensada-ICMSE, University of Seville, Av. Reina Mercedes, Seville, Spain
Search for more papers by this authorA. de Carlos
Departamento de Bioquímica, Genética e Inmunología, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
Search for more papers by this authorF. M. Muñoz
Departamento de Ciencias Clínicas Veterinarias, University of Santiago de Compostela, Facultad de Veterinaria, Lugo, Spain
Search for more papers by this authorM. López
Departamento de Ciencias Clínicas Veterinarias, University of Santiago de Compostela, Facultad de Veterinaria, Lugo, Spain
Search for more papers by this authorM. Singh
Ohio Aerospace Institute, NASA Glenn Research Center, Cleveland, Ohio
Search for more papers by this authorAbstract
A new generation of bio-derived ceramics can be developed as a base material for medical implants. Specific plant species are used as templates on which innovative transformation processes can modify the chemical composition maintaining the original biostructure. Building on the outstanding mechanical properties of the starting lignocellulosic templates, it is possible to develop lightweight and high-strength scaffolds for bone substitution. In vitro and in vivo experiments demonstrate the excellent biocompatibility of this new silicon carbide material (bioSiC) and how it gets colonized by the hosting bone tissue because of its unique interconnected hierarchic porosity, which opens the door to new biomedical applications. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2009
References
- 1 BD Ratner, AS Hoffman, FJ Schoen, editors. Biomaterials Science: An Introduction to Materials in Medicine. London: Elsevier Academic Press; 2004.
- 2
LL Hench, JR Jones, editors.
Biomaterials, Artificial Organs and Tissue Engineering.
Cambridge:
CRC Press;
2005.
10.1201/9780203024065 Google Scholar
- 3
LL Hench, J Wilson, editors.
An Introduction to Bioceramics.
Singapore:
World Scientific;
1993.
10.1142/2028 Google Scholar
- 4 T Yamamuro, LL Hench, J Wilson, editors. Handbook of Bioactive Ceramics. Boca Raton: CRC Press; 1990.
- 5 Sikavitsas VI,Temenoff JS,Mikos AG. Biomaterials and bone mechanotransduction. Biomaterials 2001; 22: 2581–2593.
- 6
DM Brunette, P Tengvall, M Textor, L Thomsen, editors.
Titanium in Medicine.
Berlin:
Springer;
2001.
10.1007/978-3-642-56486-4 Google Scholar
- 7 JA Helsen, HJ Breme, editors. Metals as Biomaterials. Biomaterials Science and Engineering Series. New York: Wiley; 1998.
- 8 DF Williams, editor. Medical and Dental Materials. Materials Science and Technology, Vol. 14. New York: VCH Publishers; 1992.
- 9 Jones JR,Hench LL. Biomedical materials for new millennium: perspective on the future. Mat Sci Technol 2001; 17: 891–990.
- 10 Vallet-Regí M. Ceramics for medical applications. Perspective article. J Chem Soc Dalton Trans 2001; 2: 97–108.
- 11 Dorozhkin SV. Calcium orthophosphates. J Mater Sci 2007; 42: 1061–1095.
- 12 Martínez-Fernández J,Varela-Feria FM,Singh M. Microstructure and thermomechanical characterizacion of biomorphic silicon carbide-based ceramics. Scr Mater 2000; 43: 813–818.
- 13 de Arellano-López AR,Martínez-Fernández J,González P,Domínguez C,Fernández-Quero V,Singh M. Biomorphic SiC: A new engineering ceramic material. Int J Appl Ceram Tech 2004; 1: 95–100.
- 14 González P,Serra J,Liste S,Chiussi S,León B,Pérez-Amor M,Martínez-Fernández J,Arellano-López AR,Varela-Feria FM. New biomorphic SiC ceramics coated with bioactive glass for biomedical applications. Biomaterials 2003; 24: 4827–4832.
- 15 Zhou H,Singh RN. Kinetics model for the growth of silicon carbide by the reaction of liquid silicon with carbon. J Am Ceram Soc 1995; 78: 2456–2462.
- 16 de Arellano-López AR,Martínez-Fernández J,Varela-Feria FM,Sepúlveda RE,López-Robledo MJ,Llorca J,Pastor JY,Presas M,Faber KT,Kaul VS,Pappacena KE,Wilkes TE. Processing, microstructure and mechanical properties of SiC-based ceramics via naturally derived scaffolds. In: R Tandon, A Wereszczak, E Lara-Curzio, editors. Mechanical Properties and Performance of Engineering Ceramics and Composites II. New Jersey: Wiley; 2007. p 635–650.
- 17 Wang O,Jin GQ,Wang DH,Guoa XY. Biomorphic porous silicon carbide prepared from carbonized millet. Mater Sci Eng 2007; 459: 1–6.
- 18
LJ Gibson, MF Ashby, editors.
Cellular Solids, Structure and Properties.
Cambridge:
Cambridge University Press;
1997.
10.1017/CBO9781139878326 Google Scholar
- 19 Presas M,Pastor JY,Llorca J,de Arellano-López AR,Martínez-Fernández J,Sepúlveda RE. Mechanical behavior of biomorphic Si/SiC porous composites. Scripta Mater 2005; 53: 1175–1180.
- 20 Kaul VS,Faber KT,Sepúlveda R,de Arellano-López AR,Martínez-Fernández J. Precursor selection and its role in the mechanical properties of porous SiC derived from wood. Mater Sci Eng 2006; 428: 225–232.
- 21 Kardashev B,Smirnov BI,de Arellano-López AR,Martínez-Fernández J,Varela-Feria FM. Elastic and anelastic properties of SiC/Si ecoceramics. Mater Sci Eng 2006; 442: 444–448.
- 22 Reilly DT,Burstein AH. The elastic and ultimate properties of compact bone tissue. J Biomech 1975; 8: 393–405.
- 23 Rae T. Tissue culture techniques in biocompatibility testing. In: DF Williams, editor. Techniques of Biocompatibility Testing. Boca Raton, FL: CRC Press; 1986. p 81–93.
- 24 Clover J,Gowen M. Are MG-63 and HOS TE85 human osteosarcoma cell lines representative models of the osteoblastic phenotype? Bone 1994; 15: 585–591.