Application of visual mechanical signal detection and loading platform with super-resolution based on deep learning
Zhiquan Ding
School of Information Engineering, East China Jiaotong University, Nanchang, China
Search for more papers by this authorYu Zhao
School of Information Engineering, East China Jiaotong University, Nanchang, China
Search for more papers by this authorGuolong Zhang
School of Information Engineering, East China Jiaotong University, Nanchang, China
Search for more papers by this authorMeiling Zhong
School of Materials Science and Engineering, East China Jiaotong University, Nanchang, China
Search for more papers by this authorXiaohui Guan
The National Engineering Research Center for Bioengineering Drugs and the Technologies, Nanchang University, Nanchang, China
Search for more papers by this authorCorresponding Author
Yuejin Zhang
School of Information Engineering, East China Jiaotong University, Nanchang, China
Correspondence Yuejin Zhang, School of Information Engineering, East China Jiaotong University, Nanchang, 330013 Jiangxi, China.
Email: [email protected]
Search for more papers by this authorZhiquan Ding
School of Information Engineering, East China Jiaotong University, Nanchang, China
Search for more papers by this authorYu Zhao
School of Information Engineering, East China Jiaotong University, Nanchang, China
Search for more papers by this authorGuolong Zhang
School of Information Engineering, East China Jiaotong University, Nanchang, China
Search for more papers by this authorMeiling Zhong
School of Materials Science and Engineering, East China Jiaotong University, Nanchang, China
Search for more papers by this authorXiaohui Guan
The National Engineering Research Center for Bioengineering Drugs and the Technologies, Nanchang University, Nanchang, China
Search for more papers by this authorCorresponding Author
Yuejin Zhang
School of Information Engineering, East China Jiaotong University, Nanchang, China
Correspondence Yuejin Zhang, School of Information Engineering, East China Jiaotong University, Nanchang, 330013 Jiangxi, China.
Email: [email protected]
Search for more papers by this authorAbstract
A visual mechanical signal detection and loading platform with super-resolution based on deep learning is designed to improve the detection accuracy of mechanical signals. The visual mechanical signal detection and loading platform with super-resolution include three-dimensional (3D) biological force quantitative detection platform and the mechanical signal loading platform with 3D magnetic distortion and ultrahigh resolution. In the 3D biological force quantitative detection platform, four 3D force sensors are used to collect mechanical signals, and the improved fuzzy clustering fusion method is used to fuse the mechanical signals collected by 3D force sensors to improve the detection accuracy of mechanical signals. The mechanical signal loading platform of 3D magnetic distortion and ultrahigh resolution technology connects the 3D magnetic distortion instrument and microscope, collects images through high-speed scanning components and distorted magnetic field, reconstructs the collected images by deep learning method, obtains ultrahigh-resolution mechanical signal visual images, and triggers mechanical signal loading and release by synchronous interactive system. The consequences of the experiment demonstrate that the designed platform can display the super-resolution mechanical signals through the visual interface. The mechanical signals are loaded in different directions, and the detection accuracy of mechanical signals is higher than 99.5%.
CONFLICTS OF INTEREST
The authors declare no potential conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The raw data required for these findings cannot be shared at this time as it is also part of ongoing research.
REFERENCES
- 1Ren H, Huang T, Yan H. Adversarial examples: attacks and defenses in the physical world. Int J Mach Learn Cybern. 2021; 12(11): 3325-3336. doi:10.1007/s13042-020-01242-z
- 2Cai J, Wang Q, Luo J, Liu Y, Liao L. CapBad: content-agnostic, payload-based anomaly detector for industrial control protocols. IEEE Internet Things J. 2021; 48(1): 1-36. doi:10.1109/JIOT.2021.3138534
- 3Cai J, Huang Z, Liao L, Luo J, Liu W. APPM: adaptive parallel processing mechanism for service function chains. IEEE Trans Network Service Manage. 2021; 18(2): 1540-1555. doi:10.1109/tnsm.2021.3052223
- 4Zhang J, Harman M, Ma L, Liu Y. Machine learning testing: survey, landscapes and horizons. IEEE Trans Software Eng. 2022; 48(1): 1-36. doi:10.1109/tse.2019.2962027
- 5Yan H, Hu L, Xiang X, Liu Z, Yuan X. PPCL: privacy-preserving collaborative learning for mitigating indirect information leakage. Inform Sci. 2021; 548: 423-437. doi:10.1016/j.ins.2020.09.064
- 6Cai J, Fu H, Liu Y. Deep reinforcement learning-based multitask hybrid computing offloading for multiaccess edge computing. Int J Intell Syst. 2022; 1-23. doi:10.1002/int.22841
- 7Hua S, Liu Q, Yin G, Guan X, Jiang N, Zhang Y. Research on 3D medical image surface reconstruction based on data mining and machine learning. Int J Intell Syst. 2021; 1-16. doi:10.1002/int.22735
- 8Fatemidokht H, Rafsanjani MK, Gupta BB, Hsu CH. Efficient and secure routing protocol based on artificial intelligence algorithms with UAV-assisted for vehicular ad hoc networks in intelligent transportation systems. IEEE Trans Intell Transport Syst. 2021; 22(7): 4757-4769. doi:10.1109/tits.2020.3041746
- 9Tan J, Huang J. Contour feature matching and stitching simulation of AR dynamic image under information background. Comput Simul. 2021; 38(6): 138-141+272.
- 10Wu C, Li W. Enhancing intrusion detection with feature selection and neural network. Int J Intell Syst. 2021; 36(7): 3087-3105. doi:10.1002/int.22397
- 11Li W, Ke L, Meng W, Han J. An empirical study of supervised email classification in internet of things: practical performance and key influencing factors. Int J Intell Syst. 2022; 37(1): 287-304. doi:10.1002/int.22625
- 12Kenyon G, Watkins Y, Kim E. A surrogate of slow-wave sleep is necessary for stable unsupervised learning in a model of cortical development. Biol Psychiatry. 2021; 89(9): S30-S31. doi:10.1016/j.biopsych.2021.02.095
- 13Zhang Y, Yin G, Ye M, Liu Q, Tu B, Li G, Zhan A. Stereo vision information system using median theorem and attitude compensation with nonlinear differential equations. Fractals. 2022; 30(2):2240073. doi:10.1142/S0218348X22400734
- 14Tu B, Zhao Y, Yin G, Jiang N, Li G, Zhang Y. Research on intelligent calculation method of intelligent traffic flow index based on big data mining. Int J Intell Syst. 2022; 37(2): 1186-1203. doi:10.1002/int.22665
- 15Mao KZ, Zhao P, Tan PH. Supervised learning-based cell image segmentation for P53 immunohistochemistry. IEEE Trans Biomed Eng. 2006; 53(6): 1153-1163. doi:10.1109/tbme.2006.873538
- 16Xiang S, Ren Z, Zhang Y, Song Z, Guo X, Han G, Hao Y. Training a multi-layer photonic spiking neural network with modified supervised learning algorithm based on photonic STDP. IEEE J Sel Top Quantum Electron. 2021; 27(2): 1-9. doi:10.1109/jstqe.2020.3005589
- 17Yan W, Sun Q, Sun H, Li Y. Semi-supervised learning framework based on statistical analysis for image set classification. Pattern Recog. 2020; 107:107500. doi:10.1016/j.patcog.2020.107500
- 18Sun Y, Xue B, Zhang M, Yen G, Lv J. Automatically designing CNN architectures using the genetic algorithm for image classification. IEEE Trans Cybernet. 2020; 50(9): 3840-3854. doi:10.1109/tcyb.2020.2983860
- 19He Q, Zhang Y, Wang J. Development and evaluation of regional SST regression algorithms for FY-3C/VIRR data in the western north pacific. Remote Sensing Lett. 2020; 11(12): 1090-1099. doi:10.1080/2150704x.2020.1823034
- 20Bui QT, Vo B, Snasel V, Pedrycz W, Hong TP, Nguyen NT, Chen MY. SFCM: a fuzzy clustering algorithm of extracting the shape information of data. IEEE Trans Fuzzy Syst. 2021; 29(1): 75-89. doi:10.1109/tfuzz.2020.3014662
- 21Cai J, Qian K, Luo J, Zhu K. SARM: service function chain active reconfiguration mechanism based on load and demand prediction. Int J Intell Syst. 2022; 1-27. doi:10.1002/int.22848
- 22Ai S, Hong S, Zheng X, Wang Y, Liu X. CSRT rumor spreading model based on complex network. Int J Intell Syst. 2021; 36(5): 1903-1913. doi:10.1002/int.22365
- 23Qin Y, Wang H, Yi S, Li X, Zhai L. An energy-aware scheduling algorithm for budget-constrained scientific workflows based on multi-objective reinforcement learning. J Supercomput. 2020; 76(1): 455-480. doi:10.1007/s11227-019-03033
- 24Padakandla S. A survey of reinforcement learning algorithms for dynamically varying environments. Acm Comput Surveys. 2021; 54(6): 1-25. doi:10.1145/3459991
- 25Chan L, Beers K, Yau AA, et al. Natural language processing of electronic health records is superior to billing codes to identify symptom burden in hemodialysis patients. Kidney Int. 2020; 97(2): 383-392. doi:10.1016/j.kint.2019.10.023
- 26Churchill RM, Chang CS, Ku S. Finding structure in large data sets of particle distribution functions using unsupervised machine learning. IEEE Trans Plasma Sci. 2020; 48(7): 2661-2664. doi:10.1109/tps.2020.2985625
- 27Hu L, Yan H, Li L, Pan Z, Liu X, Zhang Z. MHAT: an efficient model-heterogenous aggregation training scheme for federated learning. Information Sciences. 2021; 560: 493-503. doi:10.1016/j.ins.2021.01.046
- 28Adorf CS, Moore TC, Melle YJU, Glotzer SC. Analysis of self-assembly pathways with unsupervised machine learning algorithms. J Phys Chem B. 2020; 124(1): 69-78. doi:10.1021/acs.jpcb.9b09621
- 29Sun C, Zhu D, Jia H, Yang C, Zheng Z, Wang X. Bio-based visual optical pressure-responsive sensor. Carbohydr Polym. 2021; 260:117823. doi:10.1016/j.carbpol.2021.117823
- 30Zhang T, Guo H, Yang M, et al. Electrochemical sensor based on UiO-66-NH2/COCl-MWCNT/CB for simultaneous detection of dihydroxybenzene isomers in different water samples. Microchem J. 2022; 175:107139. doi:10.1016/j.microc.2021.107139
- 31Liu X, Wang H, Wu C, Gao N. On the calibration-free two-component wall-shear-stress measurement technique using dual-layer hot-films. Rev Sci Instrum. 2020; 91(8):085004. doi:10.1063/5.0006705
- 32Park J, Bartlett JM, Noad HML, et al. Rigid platform for applying large tunable strains to mechanically delicate samples. Rev Sci Instrum. 2020; 91(8):083902. doi:10.1063/5.0008829
- 33Proudhon H, Pelerin M, King A, Ludwig W. In situ 4D mechanical testing of structural materials: The data challenge. Curr Opin Solid State Mater Sci. 2020; 24(4):100834. doi:10.1016/j.cossms.2020.100834
- 34Dai W, Yan Q, Hong Z, Li Z, Wang M, Yang C. Signal demodulation method for underwater optical wireless communication by measuring the time interval between adjacent photons. Photonic Network Commun. 2021; 41(2): 202-210. doi:10.1007/s11107-021-00929-9
- 35Korayem MH, Vaez M, Rastegar Z. Modeling and simulation of three-dimensional manipulation of viscoelastic folded biological particles considering the nonlinear model of the cell by AFM. Mech Mater. 2020; 143:103342. doi:10.1016/j.mechmat.2020.103342
- 36Alipour-Sarabi R, Nasiri-Gheidari Z, Oraee H. Development of a three-dimensional magnetic equivalent circuit model for axial flux machines. IEEE Trans Ind Electron. 2020; 67(7): 5758-5767. doi:10.1109/tie.2019.2934065
- 37Cardoso VHR, Caldas P, Giraldi MTR, et al. Experimental investigation of a strain gauge sensor based on Fiber Bragg Grating for diameter measurement. Opt Fiber Technol. 2021; 61:102428. doi:10.1016/j.yofte.2020.102428
- 38Gostar AK, Rathnayake T, Tennakoon R, et al. Centralized cooperative sensor fusion for dynamic sensor network with limited field-of-view via labeled multi-bernoulli filter. IEEE Trans Signal Process. 2021; 69: 878-891. doi:10.1109/tsp.2020.3048595
- 39Taneja S, Alioto M. PUF architecture with run-time adaptation for resilient and energy-efficient key generation via sensor fusion. IEEE J Solid-State Circuits. 2021; 56(7): 2182-2192. doi:10.1109/jssc.2021.3050959
- 40Shaukat N, Ali A, Iqbal MJ, Moinuddin M, Otero P. Multi-sensor fusion for underwater vehicle localization by augmentation of RBF neural network and error-state kalman filter. Sensors. 2021; 21(4):1149. doi:10.3390/s21041149
- 41Liu T, Schnabel A, Voigt J, Kilian W, Sun Z, Li L, Trahms L. A built-in coil system attached to the inside walls of a magnetically shielded room for generating an ultra-high magnetic field homogeneity. Rev Sci Instrum. 2021; 92(2):024709. doi:10.1063/5.0027848
- 42Shi S, Liu J. Chiral condensate of cold dense quark matter with external magnetic field. Mod Phys Lett A. 2020; 35(19) . doi:10.1142/s0217732320501606
- 43Li H, Li G, Ye Y, Lin L. A high-efficiency acquisition method of LED-multispectral images based on frequency-division modulation and RGB camera. Opt Commun. 2021; 480:126492. doi:10.1016/j.optcom.2020.126492
- 44Jia S, Chen C, Liu P, Duan S. A digital phase synchronization method for bidirectional inductive power transfer. IEEE Trans Ind Electron. 2020; 67(8): 6450-6460. doi:10.1109/tie.2019.2939979
- 45Ma J, Yu J, Liu S, et al. PathSRGAN: multi-supervised super-resolution for cytopathological images using generative adversarial network. IEEE Trans Medical Imaging. 2020; 39(9): 2920-2930. doi:10.1109/tmi.2020.2980839
- 46Mahecic D, Gambarotto D, Douglass KM, et al. Homogeneous multifocal excitation for high-throughput super-resolution imaging. Nat Methods. 2020; 17(7): 726. doi:10.1038/s41592-020-0859-z
- 47Chen H, He X, Teng Q, Sheriff RE, Feng J, Xiong S. Super-resolution of real-world rock microcomputed tomography images using cycle-consistent generative adversarial networks. Phys Rev E. 2020; 101(2):023305. doi:10.1103/PhysRevE.101.023305
- 48Qiao C, Chen X, Zhang S, Li D, Guo Y, Dai Q, Li D. 3D structured illumination microscopy via channel attention generative adversarial network. IEEE J Sel Top Quantum Electron. 2021; 27(4): 1-11. doi:10.1109/jstqe.2021.3060762