Bibliometric review of research on decision models in uncertainty, 1990–2020
Corresponding Author
Luciano Barcellos-Paula
CENTRUM Católica Graduate Business School, Lima, Perú
Pontificia Universidad Católica del Perú, Lima, Perú
Correspondence Luciano Barcellos-Paula, Jirón Daniel Alomía Robles 125, Santiago de Surco, Lima 15023, Perú.
Email: [email protected]
Search for more papers by this authorIván de La Vega
CENTRUM Católica Graduate Business School, Lima, Perú
Pontificia Universidad Católica del Perú, Lima, Perú
Search for more papers by this authorAnna M. Gil-Lafuente
Department of Business Administration, University of Barcelona, Barcelona, Spain
Search for more papers by this authorCorresponding Author
Luciano Barcellos-Paula
CENTRUM Católica Graduate Business School, Lima, Perú
Pontificia Universidad Católica del Perú, Lima, Perú
Correspondence Luciano Barcellos-Paula, Jirón Daniel Alomía Robles 125, Santiago de Surco, Lima 15023, Perú.
Email: [email protected]
Search for more papers by this authorIván de La Vega
CENTRUM Católica Graduate Business School, Lima, Perú
Pontificia Universidad Católica del Perú, Lima, Perú
Search for more papers by this authorAnna M. Gil-Lafuente
Department of Business Administration, University of Barcelona, Barcelona, Spain
Search for more papers by this authorAbstract
Societies experience intense and frequent changes in diverse environments, which increase uncertainty and complexity in decision-making. The decision-maker looks for alternatives to reduce risks and face these new challenges. In this context, science plays a vital role in proposing new solutions. The article aims to: (i) to carry out a bibliometric review of decision models in uncertainty through scientific mapping and performance analysis between 1990 and 2020; (ii) to know the scientific progress of 17 models that specialists validated. The Web of Science database and the VOSviewer, R, and Python software analyzed 26,835 articles in nine bibliometric indicators. The results revealed a positive trend of the publications in the analyzed models, being the Analytic Hierarchical Process the most used. Other findings showed China as the country with more scientific collaborations. There is enormous potential for future lines of research on the subject.
REFERENCES
- 1Zadeh LA. Fuzzy sets. Inf Control. 1965; 8(3): 338-353. doi:10.1016/S0019-9958(65)90241-X
10.1016/S0019-9958(65)90241-X Google Scholar
- 2Barcellos-Paula L, De la Vega I, Gil-Lafuente AM. The quintuple helix of innovation model and the SDGs: Latin-American countries' case and its forgotten effects. Mathematics. 2021; 9(4):416. doi:10.3390/math9040416
- 3Barcellos-Paula L, Gil-Lafuente A, Castro-Rezende A. Los efectos olvidados de la pandemia del COVID 19 sobre en el envejecimiento de la población. Cuad Del CIMBAGE. 2021; 2(23): 1-17.
- 4Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci (Ny). 1975; 8(3): 199-249. doi:10.1016/0020-0255(75)90036-5
- 5John R, Coupland S. Type-2 fuzzy logic: a historical view. IEEE Comput Intell Mag. 2007; 2(1): 57-62. doi:10.1109/MCI.2007.357194
- 6Fazel Zarandi MH, Zarinbal M, Izadi M. Systematic image processing for diagnosing brain tumors: a Type-II fuzzy expert system approach. Appl Soft Comput J. 2011; 11(1): 285-294. doi:10.1016/j.asoc.2009.11.019
- 7Singh S, Garg H. Distance measures between type-2 intuitionistic fuzzy sets and their application to multicriteria decision-making process. Appl Intell. 2017; 46(4): 788-799. doi:10.1007/s10489-016-0869-9
- 8Fazel Zarandi MH, Soltanzadeh S, Mohammadi A, Castillo O. Designing a general type-2 fuzzy expert system for diagnosis of depression. Appl Soft Comput. 2019; 80: 329-341. doi:10.1016/j.asoc.2019.03.027
- 9Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986; 20(1): 87-96. doi:10.1016/S0165-0114(86)80034-3
- 10Barcellos de Paula L, Gil-Lafuente AM, Rezende AdeC. Sustainable management of the supply chain based on fuzzy logic. Cybern Syst. 2021; 52(7): 579-600. doi:10.1080/01969722.2021.1910763
- 11Karmakar S, Seikh MR, Castillo O. Type-2 intuitionistic fuzzy matrix games based on a new distance measure: application to biogas-plant implementation problem. Appl Soft Comput. 2021; 106:107357. doi:10.1016/j.asoc.2021.107357
- 12Gil-Aluja J. Elements for a Theory of Decision in Uncertainty. Vol 32. Springer; 1999. doi:10.1007/978-1-4757-3011-1
10.1007/978-1-4757-3011-1 Google Scholar
- 13Barcellos de Paula L, Gil Lafuente A. Una Contribución al Desarrollo Sostenible de las Empresas a partir de Lógica Borrosa. Cuad Del CIMBAGE. 2018; 1(20): 51-83.
- 14Bellman RE, Zadeh LA. Decision-making in a fuzzy environment. Manage Sci. 1970; 17(4): B-141-B-164. doi:10.1287/mnsc.17.4.B141
- 15Blanco-Mesa F, Lindahl JMM, Gil-Lafuente AM. A Bibliometric Analysis of Fuzzy Decision Making Research. IEEE; 2016: 1-4. doi:10.1109/NAFIPS.2016.7851585
- 16Blanco-Mesa F, Merigó JM, Gil-Lafuente AM. Fuzzy decision making: a bibliometric-based review. J Intell Fuzzy Syst. 2017; 32(3): 2033-2050. doi:10.3233/JIFS-161640
- 17Noyons ECM, Moed HF, Luwel M. Combining mapping and citation analysis for evaluative bibliometric purposes: a bibliometric study. J Am Soc Inf Sci. 1999; 50(2): 115-131. doi:10.1002/(SICI)1097-4571(1999)50:2%3C115::AID-ASI3%3E3.0.CO;2-J
- 18Noyons ECM, Moed HF, Van Raan AFJ. Integrating research performance analysis and science mapping. Scientometrics. 1999; 46(3): 591-604. doi:10.1007/BF02459614
- 19Cobo MJ, Lopez-Herrera AG, Herrera-Viedma E, Herrera F. An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the fuzzy sets theory field. J Informetr. 2011; 5(1): 146-166. doi:10.1016/j.joi.2010.10.002
- 20Saaty TL. How to make a decision: the analytic hierarchy process. Eur J Oper Res. 1990; 48(1): 9-26. doi:10.1016/0377-2217(90)90057-I
- 21Land AH, Doig AG. An automatic method of solving discrete programming problems. Econometrica. 1960; 28(3): 497. doi:10.2307/1910129
- 22Hamming RW. Error detecting and error correcting codes. Bell Syst Tech J. 1950; 29(2): 147-160. doi:10.1002/j.1538-7305.1950.tb00463.x
- 23Yager RR. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans Syst Man Cybern. 1988; 18(1): 183-190. doi:10.1109/21.87068
10.1109/21.87068 Google Scholar
- 24Kaufmann A, Gil-Aluja J. Técnicas Especiales Para La Gestión de Expertos. Milladoiro; 1993.
- 25Markov AA. Extension of the limit theorems of probability theory to a sum of variables connected in a chain. Dyn Probabilistic Syst. 1971; 1: 1-12.
- 26Saffie NAM, Shukor NM, Rasmani KA. Fuzzy Delphi method: issues and challenges. In: Zhang R, Zhang J, Hensher D, Fu X, Hua G, Tang M, eds. 2016 International Conference on Logistics, Informatics and Service Sciences (LISS). IEEE; 2016: 1-7. doi:10.1109/LISS.2016.7854490
10.1109/LISS.2016.7854490 Google Scholar
- 27Kuhn HW. The Hungarian method for the assignment problem. Nav Res Logist Q. 1955; 2(1-2): 83-97. doi:10.1002/nav.3800020109
10.1002/nav.3800020109 Google Scholar
- 28Kaufmann A, Gil-Aluja J. Técnicas Operativas de Gestión Para El Tratamiento de La Incertidumbre. Editorial Hispano Europa; 1987.
- 29Wang Z, Klir GJ. Fuzzy measure theory. IEEE Trans Fuzzy Syst. 1995; 13: 549-556. doi:10.1109/TFUZZ.1995.481959
- 30Kaufmann A, Gil-Aluja J. Modelos Para La Investigación de Efectos Olvidados. Editorial Milladoiro; 1988.
- 31Kaufmann A. Les Expertones. Ed. Hermés; 1987.
- 32Bunclark L, Barcellos-Paula L. Sustainability reporting for sustainable supply chain management in Peru. Sustain Prod Consum. 2021; 27: 1458-1472. doi:10.1016/j.spc.2021.03.013
- 33Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model. 1999; 17(1): 57-61.
- 34Aria M, Cuccurullo C. bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetr. 2017; 11(4): 959-975. doi:10.1016/j.joi.2017.08.007
- 35van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010; 84(2): 523-538. doi:10.1007/s11192-009-0146-3
- 36Osorio Gómez J, Orejuela Cabrera J. El proceso de análisis jerárquico (AHP) y la toma de decisiones multicriterio. Ejemplo de aplicación. Sci Tech. 2008; 2(39): 247-252. doi:10.22517/23447214.3217
- 37Miller S, Wagner C, Garibaldi JM, Appleby S. Constructing general Type-2 fuzzy sets from interval-valued data. In: Abbass H, Essam D, Sarker R, eds. 2012 IEEE International Conference on Fuzzy Systems. IEEE; 2012: 1-8. doi:10.1109/FUZZ-IEEE.2012.6251221
10.1109/FUZZ-IEEE.2012.6251221 Google Scholar
- 38Wagner C, Miller S, Garibaldi JM, Anderson DT, Havens TC. From interval-valued data to general type-2 fuzzy sets. IEEE Trans Fuzzy Syst. 2015; 23(2): 248-269. doi:10.1109/TFUZZ.2014.2310734
- 39Tolga AC, Parlak IB, Castillo O. Finite-interval-valued Type-2 Gaussian fuzzy numbers applied to fuzzy TODIM in a healthcare problem. Eng Appl Artif Intell. 2020; 87:103352. doi:10.1016/j.engappai.2019.103352
- 40Barcellos de Paula L, Marins FAS. Algorithms applied in decision-making for sustainable transport. J Clean Prod. 2018; 176: 1133-1143. doi:10.1016/j.jclepro.2017.11.216
- 41 UNESCO Institute for Statistic. Research and Development Expenditure (% of GDP)—China. The World Bank; 2021.
- 42Zrobek S, Kovalyshyn O, Renigier-Biłozor M, Kovalyshyn S, Kovalyshyn O. Fuzzy logic method of valuation supporting sustainable development of the agricultural land market. Sustain Dev. 2020; 28(5): 1094-1105. doi:10.1002/sd.2061
- 43Rustum R, Kurichiyanil AMJ, Forrest S, et al. Sustainability ranking of desalination plants using Mamdani Fuzzy Logic Inference Systems. Sustainability. 2020; 12(2):631. doi:10.3390/su12020631
- 44Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017; 128: 40-50. doi:10.1016/j.diabres.2017.03.024
- 45Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014; 103: 137-149. doi:10.1016/j.diabres.2013.11.002
- 46Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods. Published online 2017; 14: 290-296. doi:10.1038/nmeth.4169
- 47Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011; 94: 311-321. doi:10.1016/j.diabres.2011.10.029
- 48Torra V. Hesitant fuzzy sets. Int J Intell Syst. 2010; 25(6): 529-539. doi:10.1002/int.20418
- 49Rezaei J. Best–worst multi-criteria decision-making method. Omega. 2015; 53: 49-57. doi:10.1016/j.omega.2014.11.009
- 50Yager RR. Pythagorean membership grades in multicriteria decision making. IEEE Trans Fuzzy Syst. 2014; 22(4): 958-965. doi:10.1109/TFUZZ.2013.2278989
- 51Liu P, Chen SM, Wang P. Multiple-attribute group decision-making based on q-rung orthopair fuzzy power Maclaurin symmetric mean operators. IEEE Trans Syst Man Cybern Syst. 2020; 50(10): 3741-3756. doi:10.1109/TSMC.2018.2852948
- 52Zeshui X. Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst. 2007; 15(6): 1179-1187. doi:10.1109/TFUZZ.2006.890678
- 53Yager RR. Generalized orthopair fuzzy sets. IEEE Trans Fuzzy Syst. 2017; 25(5): 1222-1230. doi:10.1109/TFUZZ.2016.2604005
- 54Xia M, Xu Z. Hesitant fuzzy information aggregation in decision making. Int J Approx Reason. 2011; 52: 395-407. doi:10.1016/j.ijar.2010.09.002
- 55Blanco-Mesa F, León-Castro E, Merigó JM. A bibliometric analysis of aggregation operators. Appl Soft Comput. 2019; 81:105488. doi:10.1016/j.asoc.2019.105488
- 56Merigo J, Gillafuente A. The induced generalized OWA operator. Inf Sci (Ny). 2009; 179(6): 729-741. doi:10.1016/j.ins.2008.11.013
- 57Qilian L, Mendel JM. An introduction to type-2 TSK fuzzy logic systems. In: Bien Z, Min KC, Park M, eds. Conference Proceedings of the 1999 IEEE International Fuzzy Systems (FUZZ-IEEE'99) (Cat. No. 99CH36315). Vol 3. IEEE; 1999: 1534-1539. doi:10.1109/FUZZY.1999.790132
10.1109/FUZZY.1999.790132 Google Scholar
- 58N. Karnik N, M. Mendel J. Operations on type-2 fuzzy sets. Fuzzy Sets Syst. 2001; 122(2): 327-348. doi:10.1016/S0165-0114(00)00079-8
- 59Mendel J. Type-2 fuzzy sets: some questions and answers. IEEE Connect Newsl IEEE Neural. 2003; 1: 10-13.