Detection of liver abnormalities—A new paradigm in medical image processing and classification techniques
Corresponding Author
Karthikamani R
Department of ECE, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India
Correspondence
Karthikamani R, Department of ECE, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India.
Email: [email protected]
Search for more papers by this authorHarikumar Rajaguru
Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
Search for more papers by this authorCorresponding Author
Karthikamani R
Department of ECE, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India
Correspondence
Karthikamani R, Department of ECE, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India.
Email: [email protected]
Search for more papers by this authorHarikumar Rajaguru
Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
Search for more papers by this authorAbstract
The liver is the body's most essential organ, and all human activities are interrelated with normal liver function. Any malfunction of the liver may lead to fatal diseases; therefore, early detection of liver abnormalities is essential. Modern medical imaging techniques combined with engineering procedures are reducing human suffering caused by liver disease. This study uses multiple classifiers to detect liver cirrhosis in ultrasonic images. The ultrasound images were obtained from The Cancer Imaging Archive database. A gray-level co-occurrence matrix (GLCM) and statistical approaches are used to extract features from normal and liver-cirrhosis images. The extracted GLCM features are normalized and classified using nonlinear regression, linear regression, logistic regression, Bayesian Linear Discriminant Classifiers (BLDC), Gaussian Mixture Model (GMM), Firefly, Cuckoo search, Particle Swarm Optimization (PSO), Elephant search, Dragon Fly, Firefly GMM, Cuckoo search GMM, PSO GMM, Elephant search GMM, and Dragon Fly GMM classifiers. Benchmark metrics, such as sensitivity, specificity, accuracy, precision, negative predictive value, false-negative rate, balanced accuracy, F1 score, Mathew correlation coefficient, F measure, error rate, Jaccard metric, and classifier success index, are assessed to identify the best-performing classifier. The GMM classifier outperformed other classifiers for statistical features, and it achieved the highest accuracy (98.39%) and lowest error rate (1.61%). Moreover, the Dragon Fly GMM classifier achieved 90.69% for the GLCM feature used to classify liver cirrhosis.
Open Research
DATA AVAILABILITY STATEMENT
Research data are not shared.
REFERENCES
- 1Tchelepi H, Ralls PW, Radin R, Grant E. Sonography of diffuse liver disease. J Ultrasound Med. 2002; 21(9): 1023-1032; quiz 1033-4. doi:10.7863/jum.2002.21.9.1023 PMID: 12216750.
- 2Schuppan D, Afdhal NH. Liver cirrhosis. The Lancet. 2008; 371(9615): 838-851. doi:10.1016/S0140-6736(08)60383-9 PMID: 18328931; PMCID: PMC2271178.
- 3Alivar A, Daniali H, Helfroush MS. Classification of liver diseases using ultrasound images based on feature combination. Paper presented at: IEEE Proceedings of 4th International Conference on Computer and Knowledge Engineering (ICCKE). 2014: 669–72.
- 4Pournik O, Dorri S, Zabolinezhad H, Alavian SM, Eslami S. A diagnostic model for cirrhosis in patients with non-alcoholic fatty liver disease: an artificial neural network approach. Medical journal of the Islamic Republic of Iran. 2014; 28: 116 PMCID: PMC4313459.
- 5Maruyama H, Kato N. Advances in ultrasound diagnosis in chronic liver diseases. Clin Mol Hepatol. 2019; 25(2): 160-167. doi:10.3350/cmh.2018.1013
- 6Brunt EM. Grading and staging the histopathological lesions of chronic hepatitis: the Knodell histology activity index and beyond. Hepatology. 2000; 31(1): 241-246. doi:10.1002/hep.510310136 PMID: 10613753.
- 7Pisani P, Parkin DM, Bray F, Ferlay J. Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer. 1999; 83(1): 18-29. doi:10.1002/(SICI)1097-0215(19990924)83:1<18::AID-IJC5>3.0.CO;2-M
10.1002/(SICI)1097?0215(19990924)83:1<18::AID?IJC5>3.0.CO;2?M CAS PubMed Web of Science® Google Scholar
- 8Sabih D, Hussain M. Automated classification of liver disorders using ultrasound images. J Med Syst. 2012; 36(5): 3163-3172. doi:10.1007/s10916-011-9803-1 PMID: 22072280.
- 9Yeom SK, Lee CH, Cha SH, Park CM. Prediction of liver cirrhosis, using diagnostic imaging tools. World J Hepatol. 2015; 7(17): 2069-2079. doi:10.4254/wjh.v7.i17.2069
- 10Singh M, Singh S, Gupta S. A new quantitative metric for liver classification from ultrasound images. Int J Electr Comput Eng. 2012; 4(4): 605-607. doi:10.7763/IJCEE.2012.V4.567
10.7763/IJCEE.2012.V4.567 Google Scholar
- 11Kalyan K, Jakhia B, Lele RD, Joshi M, Chowdhary A. Artificial neural network application in the diagnosis of disease conditions with liver ultrasound images. Adv Bioinform. 2014; 2014:708279. doi:10.1155/2014/708279
- 12Aggarwal K, Bhamrah MS, Ryait HS. Detection of cirrhosis through ultrasound imaging by intensity difference technique. J Image Video Proc. 2019; 2019(1): 1-10. doi:10.1186/s13640-019-0482-z
- 13Xu SS, Chang CC, Su CT, Phu PQ. Classification of liver diseases based on ultrasound image texture features. Appl Sci. 2019; 9(2): 342. doi:10.3390/app9020342
- 14Bharti P, Mittal D, Ananthasivan R. Preliminary study of chronic liver classification on ultrasound images using an ensemble model. Ultrason Imaging. 2018; 40(6): 357-379. doi:10.1177/0161734618787447 PMID: 30015593.
- 15Suganya R, Rajaram S. Feature extraction and classification of ultrasound liver images using haralick texture-primitive features: application of SVM classifier. Int Conf Recent Trends Inform Technol. 2013; 2013: 596-602. doi:10.1109/ICRTIT.2013.6844269
10.1109/ICRTIT.2013.6844269 Google Scholar
- 16Aggarwal K, Bhamrah MS, Ryait HS. The identification of liver cirrhosis with modified LBP grayscaling and Otsu binarization. SpringerPlus. 2016; 5(1): 1-15. doi:10.1186/s40064-016-1970-6
- 17Gaber A, Youness HA, Hamdy A, Abdelaal HM, Hassan AM. Automatic classification of fatty liver disease based on supervised learning and genetic algorithm. Appl Sci. 2022; 12(1): 521. doi:10.3390/app12010521
- 18Aborisade DO, Ojo JA, Amole AO. Application of fuzzy-MLP model to ultrasonic liver image classification. Eur Sci J. 2014; 10(12): 249-262.
- 19Sakr AA, Fares ME, Ramadan M. Automated focal liver lesion staging classification based on haralick texture features and multi-SVM. Int J Comput Appl. 2014; 91(8): 975-8887. doi:10.5120/15901-4953
10.5120/15901?4953 Google Scholar
- 20Eisenbrey J, Lyshchik A, Wessner C. Cancer Imag Archive. 2021. doi:10.7937/TCIA.2021.v4z7-tc39
10.7937/TCIA.2021.v4z7?tc39 Google Scholar
- 21Duarte-Salazar CA, Castro-Ospina AE, Becerra MA, Delgado-Trejos E. Speckle noise reduction in ultrasound images for improving the metrological evaluation of biomedical applications: an overview. IEEE Access. 2020; 8: 15983-15999. doi:10.1109/ACCESS.2020.2967178
- 22Biradar N, Dewal ML, Rohit MK. Edge preserved speckle noise reduction using integrated fuzzy filters. Int Sch Res Notices. 2014; 2014:876434. doi:10.1155/2014/876434
- 23Lam SC. Texture feature extraction using gray level gradient based co-occurrence matrices. Paper presented at: 1996 IEEE International Conference on Systems, Man and Cybernetics Information Intelligence and Systems (Cat. No. 96CH35929); 1996; 1: 267–71. doi: 10.1109/ICSMC.1996.569778
- 24Huang X, Chen M, Liu P, Du Y. Texture feature-based classification on transrectal ultrasound image for prostatic cancer detection. Comput Math Methods Med. 2020; 2020: 7359375. doi:10.1155/2020/7359375
- 25Mohanaiah P, Sathyanarayana P, GuruKumar L. Image texture feature extraction using GLCM approach. Int J Sci Res Publ. 2013; 3(5): 1-5. ISSN 2250-3153.
- 26Öztürk Ş, Akdemir B. Application of feature extraction and classification methods for histopathological image using GLCM, LBP, LBGLCM, GLRLM and SFTA. Procedia Comput Sci. 2018; 132: 40-46. doi:10.1016/j.procs.2018.05.057
10.1016/j.procs.2018.05.057 Google Scholar
- 27Rajaguru H, Ramesh M, Manoranjith K. Analysis of epilepsy risk levels from EEG features through support vector machine and minimum relative entropy model. IOP Conf Ser: Mater Sci Eng. 2021; 1084(1):12029. doi:10.1088/1757-899X/1084/1/012029
10.1088/1757?899X/1084/1/012029 Google Scholar
- 28Prabhakar SK, Rajaguru H, Kim SH. Fuzzy-inspired photoplethysmography signal classification with bio-inspired optimization for analyzing cardiovascular disorders. Diagnostics (Basel). 2020; 10(10): 763. doi:10.3390/diagnostics10100763
- 29Prabhakar SK, Rajaguru H, Kim SH. Schizophrenia EEG signal classification based on swarm intelligence computing. Comput Intell Neurosci. 2020; 2020:8853835. doi:10.1155/2020/8853835
- 30Xu Y, Yang JY, Lu JF. An efficient kernel-based nonlinear regression method for two-class classification. Paper presented at: 2005 International Conference on Machine Learning and Cybernetics; 2005;7:4442–4445. doi: 10.1109/ICMLC.2005.1527721
- 31Prabhakar SK, Rajaguru H. EM based non-linear regression and singular value decomposition for epilepsy classification. Paper presented at: 2017 6th ICT International Student Project Conference (ICT-ISPC); 2017: 1–4. doi: 10.1109/ICT-ISPC.2017.8075356
- 32Kavitha S, Varuna S, Ramya R. A comparative analysis on linear regression and support vector regression. Paper presented at: 2016 Online International Conference on Green Engineering and Technologies (IC-GET); 2016: 1–5. doi: 10.1109/GET.2016.7916627
- 33Rajaguru H, Khan NS, Krishnamoorthy V. Performance analysis of classifiers in identifying NREM sleep and awaken stages from EEG signals. Int J Recent Technol Eng. 2020; 8(6): 2321-2326). Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP. doi:10.35940/ijrte.f9332.038620
10.35940/ijrte.f9332.038620 Google Scholar
- 34Rajaguru H, Prabhakar SK. Logistic regression Gaussian mixture model and softmax discriminant classifier for epilepsy classification from EEG signals. Paper presented at: 2017 International Conference on Computing Methodologies and Communication (ICCMC); 2017; 2017: 985–988. doi: 10.1109/ICCMC.2017.8282615
- 35Sperandei S. Understanding logistic regression analysis. Biochem Med (Zagreb). 2014; 24(1): 12-18. doi:10.11613/BM.2014.003
- 36Rajaguru H, Prabhakar SK. Performance analysis of logistic regression and kernel logistic regression for breast cancer classification. Int J Civ Eng Technol. 2017; 8(12): 60-68. Article ID: IJCIET_08_12_007, ISSN Print: 0976-6308 and ISSN Online: 0976-6316.
- 37Fonseca P, Den Teuling N, Long X, Aarts RM. Cardiorespiratory sleep stage detection using conditional random fields. IEEE J Biomed Health Inform. 2016; 21(4): 956-966. doi:10.1109/JBHI.2016.2550104
- 38Rajaguru H, Prabhakar SK. Bayesian linear discriminant analysis for breast cancer classification. Paper presented at: 2017 2nd International Conference on Communication and Electronics Systems (ICCES); 2017: 266–9. doi: 10.1109/CESYS.2017.8321279
- 39Prabhakar SK, Rajaguru H. GMM better than SRC for classifying epilepsy risk levels from EEG signals. Paper presented at: 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS); 2015: 347–50. doi: 10.1109/ICIIBMS.2015.7439551
- 40Thomas EM, Temko A, Lightbody G, Marnane WP, Boylan GB. A Gaussian mixture model based statistical classification system for neonatal seizure detection. Paper presented at: 2009 IEEE International Workshop on Machine Learning for Signal Processing; 2009: 1–6. doi: 10.1109/MLSP.2009.5306203
- 41Prabhakar SK, Rajaguru H, Lee S. A comprehensive analysis of alcoholic EEG signals with detrend fluctuation analysis and post classifiers. Paper presented at: 2019 7th International Winter Conference on Brain-Computer Interface (BCI); 2019: 1–6. doi: 10.1109/IWW-BCI.2019.8737328
- 42Yang XS. Firefly algorithm, Levy Flights and Global Optimization. Research and Development in Intelligent Systems XXVI. Springer; 2010: 209-218. doi:10.1007/978-1-84882-983-1_15
10.1007/978?1?84882?983?1_15 Google Scholar
- 43Sannasi Chakravarthy SR, Rajaguru H. Detection and classification of microcalcification from digital mammograms with firefly algorithm, extreme learning machine and nonlinear regression models: a comparison. Int J Imaging Syst Technol. 2020; 30(1): 126-146. doi:10.1002/ima.22364
- 44Yang XS. Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput. 2010; 2(2): 78-84. doi:10.1504/IJBIC.2010.032124
- 45Nayak J, Vakula K, Dinesh P, Naik B. Applications and advancements of firefly algorithm in classification: an analytical perspective. In Computational Intelligence in Pattern Recognition, Springer Nature Singapore Pte Ltd. 2020: 1011–1028. doi: 10.1007/978-981-13-9042-5_87
- 46Wikelski M, Moskowitz D, Adelman JS, Cochran J, Wilcove DS, May ML. Simple rules guide dragonfly migration. Biol Lett. 2006; 2(3): 325-329. doi:10.1098/rsbl.2006.0487
- 47Mirjalili S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Applic. 2016; 27(4): 1053-1073. doi:10.1007/s00521-015-1920-1
- 48Aci CI, Gulcan H. A modified dragonfly optimization algorithm for single- and multiobjective problems using Brownian motion. Comp Intell Neurosci. 2019; 2019: 1-17. doi:10.1155/2019/6871298
- 49Bharanidharan N, Rajaguru H. Performance enhancement of swarm intelligence techniques in dementia classification using dragonfly-based hybrid algorithms. Int J Imaging Syst Technol. 2019; 30(1): 57-74. doi:10.1002/ima.22365
- 50Kennedy J, Eberhart R. Particle swarm optimization. Paper presented at: Proceedings of ICNN'95 - International Conference on Neural Networks. 1995; 4: 1942–1948. doi: 10.1109/ICNN.1995.488968
- 51Mohsen F, Hadhoud MM, Moustafa K, Ameen K. A new image segmentation method based on particle swarm optimization. Int Arab J Inf Technol. 2012; 9(5): 487-493.
- 52Omran M, Engelbrecht AP, Salman A. Particle swarm optimization method for image clustering. Int J Pattern Recognit Artif Intell. 2005; 19(03): 297-321. doi:10.1142/S0218001405004083
- 53Bharanidharan N, Rajaguru H. Performance analysis of particle swarm optimization technique in classification of dementia using MRI images. Paper presented at: Proceedings of the 2nd International Conference on Communication and Electronics Systems (ICCES 2017) IEEE Xplore Compliant - Part Number:CFP17AWO-ART. 2017: 311–5. doi: 10.1109/CESYS.2017.8321288
- 54Deb S, Fong S, Tian Z. Elephant search algorithm for optimization problems. Paper presented at: The Tenth International Conference on Digital Information Management (ICDIM 2015). 2015: 249–55. doi: 10.1109/ICDIM.2015.7381893
- 55Bharanidharan N, Rajaguru H. Dementia MRI image classification using transformation technique based on elephant herding optimization with randomized Adam method for updating the hyper-parameters. Int J Imaging Syst Technol. 2020; 31(3): 1221-1245. doi:10.1002/ima.22522
- 56Karanjekar PJ, Nanda SJ. Elephant herding algorithm for clustering. Adv Intell Syst Comput. 2019; 317–325. doi:10.1007/978-981-13-1280-9_30
10.1007/978?981?13?1280?9_30 Google Scholar
- 57Yang XS, Deb S. Cuckoo search via Levy flights. Proceedings of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), December 2009, India. IEEE Publications; 2009: 210-214. doi:10.1109/NABIC.2009.5393690
10.1109/NABIC.2009.5393690 Google Scholar
- 58Mareli M, Twala B. An adaptive cuckoo search algorithm for optimization. Appl Comput Inform. 2018; 14(2): 107-115. doi:10.1016/j.aci.2017.09.001
10.1016/j.aci.2017.09.001 Google Scholar
- 59Sannasi Chakravarthy SR, Rajaguru H. Comparison analysis of linear discriminant analysis and cuckoo-search algorithm in the classification of breast cancer from digital mammograms. Asian Pac J Cancer Prev. 2019; 20(8): 2333-2337. doi:10.31557/APJCP.2019.20.8.2333 PMID: 31450903; PMCID: PMC6852837.
- 60Zefan C, Xiaodong Y. Cuckoo search algorithm with deep search. Paper presented at: 2017 3rd IEEE International Conference on Computer and Communications (ICCC). 2017: 2241–2246. doi: 10.1109/CompComm.2017.8322934
- 61Randhawa SK, Sunkaria RK, Bedi AK. Prediction of liver cirrhosis using weighted Fisher discriminant ratio algorithm. Paper presented at: 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), 2018: 184–187. doi: 10.1109/ICSCCC.2018.8703204
- 62Acharya UR, Koh JE, Hagiwara Y, et al. Automated diagnosis of focal liver lesions using bidirectional empirical mode decomposition features. Comput Biol Med. 2018; 94: 11-18. doi:10.1016/j.compbiomed.2017.12.024
- 63Owjimehr M, Danyali H, Helfroush MS, Shakibafard A. Staging of fatty liver diseases based on hierarchical classification and feature fusion for back-scan–converted ultrasound images. Ultrason Imag. 2017; 39(2): 79-95. doi:10.1177/0161734616649153
- 64Prajith CA, Kumar AS, Kareem H. Supervised classification and prediction of fibrosis seriousness using ultrasonic images. Paper presented at: 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). 2016: 1–4. doi: 10.1109/ICCIC.2016.7919541
- 65Acharya UR, Sudarshan VK, Koh JE, et al. Application of higher-order spectra for the characterization of coronary artery disease using electrocardiogram signals. Biomed Signal Process Control. 2017; 31: 31-43. doi:10.1016/j.bspc.2016.07.003