Transparent Conducting Electrodes for Quantum Dots Light Emitting Diodes
Hae-Jun Seok
School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeoggi-do, 16419 Republic of Korea
Search for more papers by this authorJae-Hoon Lee
School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeoggi-do, 16419 Republic of Korea
Search for more papers by this authorJin-Hyeok Park
School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeoggi-do, 16419 Republic of Korea
Search for more papers by this authorSang-Hwi Lim
School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeoggi-do, 16419 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Han-Ki Kim
School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeoggi-do, 16419 Republic of Korea
Search for more papers by this authorHae-Jun Seok
School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeoggi-do, 16419 Republic of Korea
Search for more papers by this authorJae-Hoon Lee
School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeoggi-do, 16419 Republic of Korea
Search for more papers by this authorJin-Hyeok Park
School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeoggi-do, 16419 Republic of Korea
Search for more papers by this authorSang-Hwi Lim
School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeoggi-do, 16419 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Han-Ki Kim
School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeoggi-do, 16419 Republic of Korea
Search for more papers by this authorGraphical Abstract
Abstract
In this review, we briefly describe a recent research development of transparent conducting electrodes (TCEs) for next-generation quantum dot-based light-emitting diodes (QDLEDs). Although sputtered Sn-doped In2O3 (ITO) and chemically grown F-doped SnO2 (FTO) electrodes have mainly been employed as transparent electrodes for QDLEDs, there have been great advances in TCE materials and fabrication processes. This review presents important characteristics of various TCE and applications in QDLEDs as a transparent cathode or anode. In particular, we will focus on characteristics of metal grids, metal nanowire, carbon nanotube, graphene, and hybrid electrodes for QDLEDs as promising alternatives to typical ITO and FTO electrodes. In addition, we discuss the current status of transparent conducting oxide-based QDLEDs. By comparing the performances of QDLED with different TCEs, we suggest promising alternatives ITO or FTO electrodes.
References
- 1H. Zhang, X. Sun, S. Chen, Adv. Funct. Mater. 2017, 27, 1700610.
- 2P. Reiss, G. Quemard, S. Carayon, J. Bleuse, F. Chandezon, A. Pron, Mater. Chem. Phys. 2004, 84, 10–13.
- 3J. S. Steckel, S. C. Sullivan, V. Bulović, M. G. Bawendi, Adv. Mater. 2003, 15, 1862–1866.
- 4S. Coe, W. K. Woo, M. G. Bawendi, V. Bulović, Nature 2002, 420, 800–803.
- 5V. Wood, M. L. Panzer, J. Long, M. S. Bradley, J. E. Halpert, M. G. Bawendi, V. Bulović, Adv. Mater. 2009, 21, 2151–2155.
- 6V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Nature 1994, 370, 354–357.
- 7Q. Wang, L. Wang, Z. Li, Q. Xu, Q. Lin, H. Wang, Z. Du, H. Shen, L. S. Li, Nanoscale 2018, 10, 5650–5657.
- 8Z. Li, Y. Hu, H. Shen, Q. Lin, L. Wang, H. Wang, W. Zhao, L. S. Li, Laser Photonics Rev. 2017, 11, 1600227.
- 9X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Nature 2014, 55, 96–99.
- 10D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, H. Chae, ACS Nano 2017, 11, 1982–1990.
- 11X. Chen, W. Guo, L. Xie, C. Wei, J. Zhuang, W. Su, Z. Cui, ACS Appl. Mater. Interfaces 2017, 9, 37048–37054.
- 12Y. Fang, K. Ding, Z. Wu, H. Chen, W. Li, S. Zhao, Y. Zhang, L. Wang, J Zhou, B. Hu, ACS Nano 2016, 10, 10023–10030.
- 13P. C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. R. Lee, Y. Cui, Nat. Commun. 2013, 4, 2522.
- 14E. Ramasamy, W. J. Lee, D. Y. Lee, J. S. Song, Electrochem. Commun. 2008, 10, 1087–1089.
- 15G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, T. Lee, Nanotechnology 2010, 21, 175201.
- 16K. U. Hasan, M. O. Sandberg, O. Nur, M. Willander, Adv. Opt. Mater. 2014, 2, 326–330.
- 17J. W. Kim, J. Kim, J. Vac. Sci. Technol. B 2017, 35, 04E101.
- 18W. Ji, T. Wang, B. Zhu, H. Zhang, R. Wang, D. Zhang, L. Chen, Q. Yang, H. Zhang, J. Mater. Chem. C 2017, 5, 4543–4548.
- 19D. S. Ginley, H. Hosono, D. C. Paine, Handbook of Transparent Conductor, Springers, 2010.
- 20K. Badeker, Ann. Phys. 1907, 22, 749.
- 21T. Minami, Semicond. Sci. Technol. 2005, 20, S 35–S44.
- 22I. Irfan, S. Graber, F. So, Y. Gao, Org. Electron. 2012, 13, 2028–2034.
- 23W. Cao, J. Li, H. Chen, J. Xue, J. Photonics Energy 2014, 4, 040990.
- 24E. Fortunato, D. Ginley, H. Hosono, D. C. Paine, MRS Bull. 2007, 32, 242–247.
- 25M. M. Masis, S. D. Wolf, R. W. Robinson, J. W. Ager, C. Ballif, Adv. Funct. Mater. 2017, 3, 1600529.
- 26L. Holland, G. Siddall, Vacuum 1953, 3, 375–391.
10.1016/0042-207X(53)90411-4 Google Scholar
- 27R. Groth, E. Kauer, Philips Tech. Rev. 1965, 26, 105.
- 28A. Walsh, J. L. F. D. Silva, S. H. Wei, C. Körber, A. Klein, L. F. J. Piper, A. DeNasi„ K. E. Smith, G. Panaccione, P. Torelli, D. J. Payne, A. Bourlange, R. G. Egdell, Phys. Rev. Lett. 2008, 100, 167402–4.
- 29P. D. C. King, T. D. Veal, F. Fuchs, Ch. Y. Wang, D. J. Payne, A. Bourlange, H. Zhang, G. R. Bell, V. Cimalla, O. Ambacher, R. G. Egdell, F. Bechstedt, C. F. Mc Conville, Phys. Rev. B 2009, 79, 205211.
- 30T. Minami, Thin Solid Films 2008, 516, 5822–5828.
- 31H. Hara, T. Shiro, T. Yatabe, Japan. J. Appl. Phys. 2004, 43, 745–749.
- 32A. Kumar, C. Zhou, ACS Nano 2010, 4, 11–14.
- 33D. J. Milliron, I. G. Hill, C. Shen, A. Kahn, J. Schwartz, J. Appl. Phys. 2000, 87, 572–576.
- 34C. N. Li, C. Y. Kwong, A. B. Djurišic, P. T. Lai, P. C. Chui, W. K. Chan, S. Y. Liu, Thin Solid Films 2005, 477, 57–62.
- 35G. Gu, G. Parthasarathy, P. E. Burrows, P. Tian, I. G. Hill, A. Kahn, S. R. Forrest, J. Appl. Phys. 1999, 86, 4067–4075.
- 36D. Kim, Y. Han, J. S. Cho, S. K. Koh, Thin Solid Films 2000, 377–378, 81–86.
- 37Y. Hoshi, T. Kiyomura, Thin Solid Films 2002, 311, 36–41.
- 38W. Wang, H. Peng, S. Chen, J. Mater. Chem. C 2016, 4, 1838–1841.
- 39H. Y. Kim, Y. J. Park, J. Kim, C. J. Han, J. Lee, Y. Kim, T. Greco, C. Ippen, A. Wedel, B. K. Ju, M. S. Oh, Adv. Funct. Mater. 2016, 26, 3454–3461.
- 40W. Cao, Y. Zheng, Z. Li, E. Wrzesniewski, W. T. Hammond, J. Xue, Org. Electron. 2012, 13, 2221–2228.
- 41M. Vosgueritchian, D. J. Lipomi, Z. Bao, Adv. Funct. Mater. 2012, 22, 421–428.
- 42M. Song, D. S. You, K. Lim, S. Park, S. Jung, C. S. Kim, D. H. Kim, D. G. Kim, J. K. Kim, J. Park, Y. C. Kang, J. Heo, S. H. Jin, J. H. Park, J. W. Kang, Adv. Funct. Mater. 2013, 23, 4177–4184.
- 43A. R. Babar, S. S. Shinde, A. V. Moholkar, C. H. Bhosale, J. H. Kim, K. Y. Rajpure, J. Semicond. 2011, 32, 053001.
- 44E. Ching-Prado, A. Watson, H. Miranda, I. Abrego, MRS Adv. 2016, 1, 3133–3138.
- 45H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, D. C. Look, Appl. Phys. Lett. 2000, 77, 3761.
- 46S. H. Park, J. B. Park, P. K. Song, Curr. Appl. Phys. 2010, 10, S 488–S490.
- 47S. Lattante, Electronics 2014, 3, 132–164.
- 48T. Karasawa, Y. Miyata, Thin Solid Films 1993, 223, 135–139.
- 49W. G. Haines, R. H. Bube, J. Appl. Phys. 1978, 49, 304–307.
- 50M. T. Bhatti, A. M. Rana, A. F. Khan, Mater. Chem. Phys. 2004, 84, 126–130.
- 51X. Zhang, W. Wu, T. Tian, Y. Man, J. Wnag, Mater. Res. Bull. 2008, 43, 1016–1022.
- 52K. H. Choi, J. A. Jeong, J. W. Kang, D. G. Kim, J. K. Kim, S. I. Na, D. Y. Kim, S. S. Kim, H. K. Kim, Sol. Energy Mater. Sol. Cells 2009, 93, 1248–1255.
- 53D. Li, J. Bai, T. Zhang, C. Chang, X. Jin, Z. Huang, B. Xu, Q. Li, Chem. Commun. 2019, 55, 3501–3504.
- 54Z. Li, Y. Hu, H. Shen, Q. Lin, L. Wang, H. Wang, W. Zhao, L. S. Li, Laser Photonics Rev. 2017, 11, 1600227.
- 55X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Gao, X. Liang, L. Chen, J. Wang, X. Peng, Nature 2014, 515, 96–99.
- 56R. Vasan, H. Salman, M. O. Manasreh, IEEE Electron Device Lett. 2018, 39, 536–539.
- 57J. G. Kim, J. E. Lee, S. M. Jo, B. D. Chin, J. Y. Baek, K. J. Ahn, S. J. Kang, H. K. Kim, Sci. Rep. 2018, 8, 12019.
- 58K. A. Bush, C. D. Bailie, Y. Chen, A. R. Bowring, W. Wang, W. Ma, T. Leijtens, F. Moghadam, M. D. McGehee, Adv. Mater. 2016, 28, 3937–3943.
- 59G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, S. T. Wu, J. Phys. D: Appl. Phys. 2016, 49, 315101.
- 60Z. Yin, S. Sun, T. Salim, S. Wu, X. Huang, Q. He, Y. M. Lam, H. Zhang, ACS Nano 2010, 4, 5263–5268.
- 61L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, Y. Cul, ACS Nano 2010, 4, 2955–2963.
- 62A. M. Gaikwad, G. L. Whiting, D. A. Steingart, A. C. Arias, Adv. Mater. 2011, 23, 3251–3255.
- 63J. H. Park, D. Y. Lee, Y. H. Kim, J. K. Kim, J. H. Lee, J. H. Park, T. W. Lee, J. H. Cho, ACS Appl. Mater. Interfaces 2014, 6, 12380–12387.
- 64S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, S. H. Ko, ACS Nano 2013, 7, 5024–5031.
- 65I. Kim, S. W. Kwak, Y. Ju, G. Y. Park, T. M. Lee, Y. Jang, Y. M. Choi, D. Kang, Thin Solid Films 2015, 580, 21–28.
- 66D. S. Ghosh, T. L. Chen, V. Pruneri, Appl. Phys. Lett. 2010, 96, 041109.
- 67Y. Lee, W. Y. Jin, K. Y. Cho, J. W. Kang, J. Kim, J. Mater. Chem. C 2016, 4, 7577.
- 68W. Y. Jin, R. T. Ginting, K. J. Ko, J. W. Kang, Sci. Rep. 2016, 6, 36475.
- 69T. Wang, M. Kaempgen, P. Nopphawan, G. Wee, S. Mhaisalkar, M. Srinivasan, J. Power Sources 2010, 195, 4350–4355.
- 70M. G. Kang, H. J. Park, S. H. Ahan, L. J. Guo, Sol. Energy Mater. Sol. Cells 2010, 94, 1179–1184.
- 71D. S. Hecht, L. Hu, G. Irvin, Adv. Mater. 2011, 23, 1482–1513
- 72J. V. D. Groep, P. Spinelli, A. Polman, Nano Lett. 2012, 12, 3138–3144.
- 73L. Kinner, S. Nau, K. Popovic, S. Sax, I. B. Ceballos, F. Hermerschmidt, A. Lange, C. Boeffel, S. A. Choulis, E. J. W. L. Kratochvil, Appl. Phys. Lett. 2017, 110, 101107.
- 74A. Khan, S. Lee, T. Jang, Z. Xiong, C. Zhang, J. Tang, L. J. Guo, W. D. Li, Small 2016, 12, 3021–3030.
- 75Y. M. Choi, K. Y. Kim, E. Lee, J. Jo, T. M. Lee, J. Inf. Disp. 2015, 16, 37–41.
- 76Z. Zhong, K. Woo, I. Kim, H. Kim, P. Ko, D. Kang, S. Kwon, H. Kim, H. Youn, J. Moon, Small 2018, 14, 1800676.
- 77H. B. Lee, W. Y. Jin, M. M. Ovhal, N. Kumar, J. W. Kang, J. Mater. Chem. C 2019, 7, 1087–1110.
- 78X. Chen, W. Guo, L. Xie, C. Wei, J. Zhuang, W. Su, Z. Cui, ACS Appl. Mater. Interfaces 2017, 9, 37048–37054.
- 79M. M. Masis, S. D. Wolf, R. W. Robinson, J. W. Ager, C. Ballif, Adv. Electron. Mater. 2017, 3, 1600529.
- 80E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. G. Christoforo, Y. Cui, M. D. McGehee, M. L. Brongersma, Nat. Mater. 2012, 11, 241–249.
- 81D. Y. Choi, H. W. Kang, H. J. Sung, S. S. Kim, Nanoscale 2013, 5, 977–983.
- 82H. Lee, M. Kim, I. Kim, H. Lee, Adv. Mater. 2016, 28, 4541–4548.
- 83K. Zilberberg, F. Gasse, R. Pagui, A. Polywka, A. Behrendt, S. Trost, R. Heiderhoff, P. Gorrn, T. Riedl, Adv. Funct. Mater. 2014, 24, 1671–1678.
- 84K. Rajan, I. Roppolo, A. Chiappone, S. Bocchini, D. Perrone, A. Chiolerio, Nanotechnology, Science and Applications 2016, 9, 1–13.
- 85D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, J. P. Simonato, Nanotechnology 2013, 24, 452001.
- 86W. He, C. Ye, J. Mater. Sci. Technol. 2015, 31, 581–588.
- 87A. R. Madaria, A. Kumar, F. N. Ishikawa, C. Zhou, Nano Res. 2010, 3, 564–573.
- 88J. Li, J. Liang, X. Jian, W. Hu, J. Li, Q. Pei, Macromol. Mater. Eng. 2014, 299, 1403–1409.
- 89L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, W. You, ACS Appl. Mater. Interfaces 2011, 3, 4075–4084.
- 90D. Y. Shin, G. R. Yi, D. Lee, J. Park, Y. B. Lee, I. Hwang, S. Chun, Nanoscale 2013, 5, 5043.
- 91J. Lee, P. Lee, H. B. Lee, S. Hong, I. Lee, J. Yeo, S. S. Lee, T. S. Kim, D. Lee, S. H. Ko, Adv. Funct. Mater. 2013, 23, 4171–4176.
- 92S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, M. Y. Yang, S. H. Ko, Adv. Mater. 2014, 26, 5808–5814.
- 93F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, R. H. Friend, Appl. Phys. Lett. 2011, 99, 183307.
- 94S. J. Lee, Y. H. Kim, J. K. Kim, H. Baik, J. H. Park, J. Lee, J. Nam, J. H. Park, T. W. Lee, G. R. Yi, J. H. Cho, Nanoscale 2014, 6, 11828.
- 95Y. M. Chang, W. Y. Yeh, P. C. Chen, Nanotechnology 2014, 25, 285601.
- 96S. J. Lee, Y. H. Kim, J. K. Kim, H. Baik, J. H. Park, J. Lee, J. Nam, J. H. Park, T. W. Lee, G. R. Yi, J. H. Cho, Nanoscale 2014, 6, 11828.
- 97K. Ding, Y. Fang, S. Dong, H. Chen, B. Luo, K. Jiang, H. Gu, L. Fan, S. Liu, B. Hu, L. Wang, Adv. Opt. Mater. 2018, 6, 1800347.
- 98Y. Fang, K. Ding, Z. Wu, H. Chen, W. Ki, S. Zhao, Y. Zhang, Lei Wang, J. Zhou, B. Hu, ACS Nano 2016, 10, 10023–10030.
- 99Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater. 2010, 22, 3906–3924.
- 100M. S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 1995, 33, 883–891.
- 101Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Nature 2005, 438, 201–204.
- 102E. J. López-Naranjo, L. J. González-Ortiz, L. M. Apátiga, E. M. Rivera-Muñoz, A. Manzano-Ramírez, J. Nanomater. 2016, 2016, 4928365.
- 103S. Wolff, D. Jansen, H. Terlinden, Y. Kelestemur, W. Mertin, H. V. Demir, G. Bacher, E. Nannen, Appl. Phys. A Mater. Sci. Process. 2015, 120, 1197–1203.
- 104K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666–669.
- 105K. S. Kim, Z. Yue, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 2009, 457, 706–710.
- 106S. Pang, Y. Hernandez, X. feng, K. Mullen, Adv. Mater. 2011, 23, 2779–2795.
- 107M. He, J. Jung, F. Qiu, Z. Lin, J. Mater. Chem. 2012, 22, 24254–24264.
- 108S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282.
- 109Y. W. Zhu, W. W. Cai, R. D. Piner, A. Velamakanni, R. S. Ruoff, Appl. Phys. Lett. 2009, 95, 103104.
- 110D. S. Hecht, L. Hu, G. Irvin, Adv. Mater. 2011, 23, 1482–1513.
- 111J. B. Wu, M. Agarwal, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, P. Peumans, ACS Nano 2010, 4, 43–48.
- 112L. Yao, X. Fang, W. Gu, W. Zhai, Y. Wan, X. Xie, W. Xu, X. Pi, G. Ran, G. Qin, ACS Appl. Mater. Interfaces 2017, 9, 24005–24010.
- 113M. K. Choi, I. H. Park, D. C. Kim, E. Y. Joh, O. K. Park, J. M. Kim, M. B. Kim, C. S. Choi, J. W. Yang, K. W. Cho, Adv. Funct. Mater. 2015, 25, 7109–7118.
- 114J. T. Seo, J. B. Han, T. Y. Lim, K. H. Lee, J. S. Hwang, H. S. Yang, S. H. Ju, ACS Nano 2014, 8, 12476–12482.
- 115L. Hu, D. S. Hecht, G. Gruner, Chem. Rev. 2010, 110, 5790–5844.
- 116S. Iijima, T. Ichihashi, Nature 1993, 363, 603–605.
- 117T. Durkop, S. A. Getty, E. Cobas, M. S. Fuhrer, Nano Lett. 2004, 4, 35–39.
- 118T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio, Nature 1996, 382, 54–56.
- 119Z. Wu, Z. H. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, Science 2004, 305, 1273–1276.
- 120E. S. Snow, J. P. Novak, P. M. Campbell, D. Park, Appl. Phys. Lett. 2003, 82, 2145.
- 121R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science 2002, 297, 787–792.
- 122M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, R. H. Baughman, Science 2005, 309, 1215–1219.
- 123B. Ruzicka, L. Degiorgi, R. Gaal, L. Thien-Nga, R. Bacsa, J. P. Salvetat, L. Forro, Phys. Rev. B 2000, 61, R 2468.
- 124M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. Hu, G. Gruner, Appl. Phys. Lett. 2006, 88, 233506.
- 125S. Kim, J. Yim, X. Wang, D. D. C. Bradley, S. Lee, J. C. deMello, Adv. Funct. Mater. 2010, 20, 2310–2316.
- 126Z. Yang, T. Chen, R. He, G. Guan, H. Li, L. Qiu, H. Peng, Adv. Mater. 2011, 23, 5436–5439.
- 127A. E. Farghal, S. Wageh, A. A. El-Azm, PIER C 2011, 19, 47–59.
10.2528/PIERC10112602 Google Scholar
- 128L. Peng, Y. Feng, P. Lv, D. Lei, Y. Shen, Y. Li, W. Feng, J. Phys. Chem. C 2012, 116, 4970–4978.
- 129C. Jeong, P. Nair, M. Khan, M. Lundstrom, M. A. Alam, Nano Lett. 2011, 11, 5020–5025.
- 130F. Li, J. Shen, X. Liu, Z. Cao, X. Cai, J. Li, K. Ding, J. Liu, Org. Electron. 2017, 51, 54–61.
- 131Y. S. Park, K. H. Choi, H. K. Kim, J. Phys. D: Appl. Phys. 2009, 42, 235109.
- 132J. E. Lim, S. M. Lee, S. S. Kim, T. W. Kim, H. W. Koo, H. K. Kim, Sci. Rep. 2017, 7, 14685.
- 133J. A. Jung, H. K. Kim, J. H. Kim, Sol. Energy Mater. Sol. Cells 2014, 125, 113–119.
- 134W. Ji, T. Wang, B. Zhu, H. Zhang, R. Wang, D. Zhang, L. Chen, Q. Yang, H. Zhang, J. Mater. Chem. C 2017, 5, 4543–4548.
- 135Z. Li, Microelectron. Int. 2018, 35, 215–219.
- 136H. H. Kim, J. W. Shim, Y. J. You, Y. J. Lee, C. Park, D. K. Hwang, W. K. Choi, J. Mater. Chem. C 2017, 5, 1596–1600.
- 137M. H. Lee, L. Chen, N. Li, F. Zhu, J. Mater. Chem. C 2017, 5, 10555–10561.