Quantum Dots Based Photocatalytic Hydrogen Evolution
Xiang-Bing Fan
Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA United Kingdom
Search for more papers by this authorShan Yu
School of Materials Science and Engineering, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu, 610500 P. R. China
Search for more papers by this authorCorresponding Author
Bo Hou
Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA United Kingdom
Search for more papers by this authorJong Min Kim
Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA United Kingdom
Search for more papers by this authorXiang-Bing Fan
Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA United Kingdom
Search for more papers by this authorShan Yu
School of Materials Science and Engineering, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu, 610500 P. R. China
Search for more papers by this authorCorresponding Author
Bo Hou
Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA United Kingdom
Search for more papers by this authorJong Min Kim
Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA United Kingdom
Search for more papers by this authorGraphical Abstract
Abstract
Photocatalytic production of hydrogen from water can directly convert solar energy into chemical energy storage, which has significant advantages and great promise. As an emerging photosensitizer, the efficiency of quantum dots (QDs) based artificial photosynthetic system have made breakthroughs. In this review, we will give a summary of the development of QDs based photocatalytic hydrogen evolution in these years. First, we highlight different types of hydrogen evolution catalyst combined with QDs; then we focus on the surface modification and heterostructure formation of QDs to improve the photocatalytic efficiency, respectively. In the end, we will propose some Cd-free QDs and future development of photocatalytic hydrogen evolution.
References
- 1S. Chu, Y. Cui, N. Liu, Nat. Mater. 2017, 16, 16–22.
- 2T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 2014, 43, 7520–7535.
- 3S. Berardi, S. Drouet, L. Francas, C. Gimbert-Surinach, M. Guttentag, C. Richmond, T. Stoll, A. Llobet, Chem. Soc. Rev. 2014, 43, 7501–7519.
- 4A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253–278.
- 5X. Chen, S. Shen, L. Guo, S. S. Mao, Chem. Rev. 2010, 110, 6503–6570.
- 6Z. Han, R. Eisenberg, Acc. Chem. Res. 2014, 47, 2537–2544.
- 7L.-Z. Wu, B. Chen, Z.-J. Li, C.-H. Tung, Acc. Chem. Res. 2014, 47, 2177–2185.
- 8G. Chethana, L. Anna, B. Raffaella, J. Phys. D: Appl. Phys. 2017, 50, 074006.
- 9X.-B. Li, C.-H. Tung, L.-Z. Wu, Nat. Rev. Chem. 2018, 2, 160–173.
- 10M. S. Kodaimati, K. P. McClelland, C. He, S. Lian, Y. Jiang, Z. Zhang, E. A. Weiss, Inorg. Chem. 2018, 57, 3659–3670.
- 11A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, J. C. Johnson, Chem. Rev. 2010, 110, 6873–6890.
- 12X. Peng, Acc. Chem. Res. 2010, 43, 1387–1395.
- 13D. V. Talapin, J.-S. Lee, M. V. Kovalenko, E. V. Shevchenko, Chem. Rev. 2010, 110, 389–458.
- 14K. V. Vokhmintcev, P. S. Samokhvalov, I. Nabiev, Nano Today 2016, 11, 189–211.
- 15B. Hou, Y. Cho, B.-S. Kim, D. Ahn, S. Lee, J. B. Park, Y.-W. Lee, J. Hong, H. Im, S. M. Morris, J. I. Sohn, S. Cha, J. M. Kim, J. Mater. Chem. C 2017, 5, 3692–3698.
- 16B. Hou, Y. Cho, B. S. Kim, J. Hong, J. B. Park, S. J. Ahn, J. I. Sohn, S. Cha, J. M. Kim, ACS Energy Lett. 2016, 1, 834–839.
- 17Y. Yan, R. W. Crisp, J. Gu, B. D. Chernomordik, G. F. Pach, Ashley R. Marshall, J. A. Turner, M. C. Beard, Nat. Energy 2017, 2, 17052.
- 18A. Nag, M. V. Kovalenko, J.-S. Lee, W. Liu, B. Spokoyny, D. V. Talapin, J. Am. Chem. Soc. 2011, 133, 10612–10620.
- 19M. Yuan, M. Liu, E. H. Sargent, Nat. Energy 2016, 1, 16016.
- 20K. Wu, T. Lian, Chem. Soc. Rev. 2016, 45, 3781–3810.
- 21P. Zrazhevskiy, M. Sena, X. Gao, Chem. Soc. Rev. 2010, 39, 4326–4354.
- 22A. M. Smith, S. Nie, Acc. Chem. Res. 2009, 43, 190–200.
- 23M. A. Holmes, T. K. Townsend, F. E. Osterloh, Chem. Commun. 2012, 48, 371–373.
- 24J. Zhao, M. A. Holmes, F. E. Osterloh, ACS Nano 2013, 7, 4316–4325.
- 25H. Zhu, Y. Yang, K. Wu, T. Lian, Annu. Rev. Phys. Chem. 2016, 67, 259–281.
- 26R. D. Harris, S. Bettis Homan, M. Kodaimati, C. He, A. B. Nepomnyashchii, N. K. Swenson, S. Lian, R. Calzada, E. A. Weiss, Chem. Rev. 2016, 116, 12865–12919.
- 27H. Zhu, N. Song, H. Lv, C. L. Hill, T. Lian, J. Am. Chem. Soc. 2012, 134, 11701–11708.
- 28C. Liu, F. Qiu, J. J. Peterson, T. D. Krauss, J. Phys. Chem. B 2014, 119, 7349–7357.
- 29S. Lian, D. J. Weinberg, R. D. Harris, M. S. Kodaimati, E. A. Weiss, ACS Nano 2016, 10, 6372–6382.
- 30Q. Li, F. Zhao, C. Qu, Q. Shang, Z. Xu, L. Yu, J. R. McBride, T. Lian, J. Am. Chem. Soc. 2018, 140, 11726–11734.
- 31A. J. Nozik, Chem. Phys. Lett. 2008, 457, 3–11.
- 32M. C. Beard, J. Phys. Chem. Lett. 2011, 2, 1282–1288.
- 33H. Zhu, Y. Yang, T. Lian, Acc. Chem. Res. 2013, 46, 1270–1279.
- 34M. A. Boles, D. Ling, T. Hyeon, D. V. Talapin, Nat. Mater. 2016, 15, 141–153.
- 35E. A. Weiss, ACS Energy Lett. 2017, 2, 1005–1013.
- 36J. Yang, D. Wang, H. Han, C. Li, Acc. Chem. Res. 2013, 46, 1900–1909.
- 37J. Ran, J. Zhang, J. Yu, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2014, 43, 7787–7812.
- 38Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, 4998.
- 39F. F. Schweinberger, M. J. Berr, M. Döblinger, C. Wolff, K. E. Sanwald, A. S. Crampton, C. J. Ridge, F. Jäckel, J. Feldmann, M. Tschurl, U. Heiz, J. Am. Chem. Soc. 2013, 135, 13262–13265.
- 40Y. Nakibli, P. Kalisman, L. Amirav, J. Phys. Chem. Lett. 2015, 6, 2265–2268.
- 41X.-B. Li, Y.-J. Gao, Y. Wang, F. Zhan, X.-Y. Zhang, Q.-Y. Kong, N.-J. Zhao, Q. Guo, H.-L. Wu, Z.-J. Li, Y. Tao, J.-P. Zhang, B. Chen, C.-H. Tung, L.-Z. Wu, J. Am. Chem. Soc. 2017, 139, 4789–4796.
- 42Z.-J. Li, X.-B. Li, J.-J. Wang, S. Yu, C.-B. Li, C.-H. Tung, L.-Z. Wu, Energy Environ. Sci. 2013, 6, 465–469.
- 43Z.-J. Li, X.-B. Fan, X.-B. Li, J.-X. Li, C. Ye, J.-J. Wang, S. Yu, C.-B. Li, Y.-J. Gao, Q.-Y. Meng, C.-H. Tung, L.-Z. Wu, J. Am. Chem. Soc. 2014, 136, 8261–8268.
- 44Z.-J. Li, J.-J. Wang, X.-B. Li, X.-B. Fan, Q.-Y. Meng, K. Feng, B. Chen, C.-H. Tung, L.-Z. Wu, Adv. Mater. 2013, 25, 6613–6618.
- 45J.-J. Wang, Z.-J. Li, X.-B. Li, X.-B. Fan, Q.-Y. Meng, S. Yu, C.-B. Li, J.-X. Li, C.-H. Tung, L.-Z. Wu, ChemSusChem 2014, 7, 1468–1475.
- 46T. Simon, N. Bouchonville, M. J. Berr, A. Vaneski, A. Adrović, D. Volbers, R. Wyrwich, M. Döblinger, A. S. Susha, A. L. Rogach, F. Jäckel, J. K. Stolarczyk, J. Feldmann, Nat. Mater. 2014, 13, 1013–1018.
- 47M. Liu, Y. Chen, J. Su, J. Shi, X. Wang, L. Guo, Nat. Energy 2016, 1, 16151.
- 48S. Yin, J. Han, Y. Zou, T. Zhou, R. Xu, Nanoscale 2016, 8, 14438–14447..
- 49Q. Guo, F. Liang, X.-Y. Gao, Q.-C. Gan, X.-B. Li, J. Li, Z.-S. Lin, C.-H. Tung, L.-Z. Wu, ACS Catal. 2018, 5890–5895.
- 50Z. Han, F. Qiu, R. Eisenberg, P. L. Holland, T. D. Krauss, Science 2012, 338, 1321–1324.
- 51A. Das, Z. Han, M. G. Haghighi, R. Eisenberg, Proc. Natl. Acad, Sci. U. S. A. 2013, 110, 16716–16723.
- 52H. Lv, T. P. A. Ruberu, V. E. Fleischauer, W. W. Brennessel, M. L. Neidig, R. Eisenberg, J. Am. Chem. Soc. 2016, 138, 11654–11663.
- 53J. Huang, K. L. Mulfort, P. Du, L. X. Chen, J. Am. Chem. Soc. 2012, 134, 16472–16475.
- 54C. Gimbert-Surinach, J. Albero, T. Stoll, J. Fortage, M. N. Collomb, A. Deronzier, E. Palomares, A. Llobet, J. Am. Chem. Soc. 2014, 136, 7655–7661.
- 55M. Frey, ChemBioChem 2002, 3, 153–160.
10.1002/1439-7633(20020301)3:2/3<153::AID-CBIC153>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 56K. A. Brown, S. Dayal, X. Ai, G. Rumbles, P. W. King, J. Am. Chem. Soc. 2010, 132, 9672–9680.
- 57K. A. Brown, M. B. Wilker, M. Boehm, G. Dukovic, P. W. King, J. Am. Chem. Soc. 2012, 134, 5627–5636.
- 58M. B. Wilker, K. E. Shinopoulos, K. A. Brown, D. W. Mulder, P. W. King, G. Dukovic, J. Am. Chem. Soc. 2014, 136, 4316–4324.
- 59F. Wang, W.-G. Wang, X.-J. Wang, H.-Y. Wang, C.-H. Tung, L.-Z. Wu, Angew. Chem. Int. Ed. 2011, 50, 3193–3197.
- 60J.-X. Jian, Q. Liu, Z.-J. Li, F. Wang, X.-B. Li, C.-B. Li, B. Liu, Q.-Y. Meng, B. Chen, K. Feng, C.-H. Tung, L.-Z. Wu, Nat. Commun. 2013, 4, 2695.
- 61C.-B. Li, Z.-J. Li, S. Yu, G.-X. Wang, F. Wang, Q.-Y. Meng, B. Chen, K. Feng, C.-H. Tung, L.-Z. Wu, Energy Environ. Sci. 2013, 6, 2597–2602.
- 62F. Wang, W.-J. Liang, J.-X. Jian, C.-B. Li, B. Chen, C.-H. Tung, L.-Z. Wu, Angew. Chem. Int. Ed. 2013, 52, 8134–8138
- 63M. Wen, X.-B. Li, J.-X. Jian, X.-Z. Wang, H.-L. Wu, B. Chen, C.-H. Tung, L.-Z. Wu, Sci. Rep. 2016, 6, 29851.
- 64H. H.-Y. Wei, C. M. Evans, B. D. Swartz, A. J. Neukirch, J. Young, O. V. Prezhdo, T. D. Krauss, Nano Lett. 2012, 12, 4465–4471.
- 65J. Jasieniak, P. Mulvaney, J. Am. Chem. Soc. 2007, 129, 2841–2848.
- 66L. Huang, J. Yang, X. Wang, J. Han, H. Han, C. Li, Phys. Chem. Chem. Phys. 2013, 15, 553–560.
- 67Y. Ye, X. Wang, S. Ye, Y. Xu, Z. Feng, C. Li, J. Phys. Chem. C 2017, 121, 17112–17120.
- 68M.-Y. Huang, X.-B. Li, Y.-J. Gao, J. Li, H.-L. Wu, L.-P. Zhang, C.-H. Tung, L.-Z. Wu, J. Mater. Chem. A 2018, 6, 6015–6021.
- 69L. Li, P. Reiss, J. Am. Chem. Soc. 2008, 130, 11588–11589.
- 70W. W. Yu, X. Peng, Angew. Chem. Int. Ed. 2002, 41, 2368–2371.
10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 71J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, X. Peng, J. Am. Chem. Soc. 2003, 125, 12567–12575.
- 72N. C. Anderson, M. P. Hendricks, J. J. Choi, J. S. Owen, J. Am. Chem. Soc. 2013, 135, 18536–18548.
- 73B. Hou, D. Benito-Alifonso, N. Kattan, D. Cherns, M. C. Galan, D. J. Fermín, Chem. Eur. J. 2013, 19, 15847–15851.
- 74P. Wang, J. Zhang, H. He, X. Xu, Y. Jin, Nanoscale 2015, 7, 5767–5775.
- 75W. Li, J. R. Lee, F. Jäckel, ACS Appl. Mater. Interfaces 2016, 8, 29434–29441.
- 76M. B. Wilker, J. K. Utterback, S. Greene, K. A. Brown, D. W. Mulder, P. W. King, G. Dukovic, J. Phys. Chem. C 2017, 122, 741–750.
- 77C. M. Chang, K. L. Orchard, B. C. M. Martindale, E. Reisner, J. Mater. Chem. A 2016, 4, 2856–2862.
- 78D. W. Wakerley, M. F. Kuehnel, K. L. Orchard, K. H. Ly, T. E. Rosser, E. Reisner, Nat. Energy 2017, 2, 17021.
- 79P. Wang, J. Zhang, H. He, X. Xu, Y. Jin, Nanoscale 2014, 6, 13470–13475.
- 80M. K. Jana, U. Gupta, C. N. R. Rao, Dalton Trans. 2016, 45, 15137–15141.
- 81Z.-J. Li, X.-B. Fan, X.-B. Li, J.-X. Li, F. Zhan, Y. Tao, X. Zhang, Q.-Y. Kong, N.-J. Zhao, J.-P. Zhang, C. Ye, Y.-J. Gao, X.-Z. Wang, Q.-Y. Meng, K. Feng, B. Chen, C.-H. Tung, L.-Z. Wu, J. Mater. Chem. A 2017, 5, 10365–10373.
- 82X.-B. Li, Y.-J. Gao, H.-L. Wu, Y. Wang, Q. Guo, M.-Y. Huang, B. Chen, C.-H. Tung, L.-Z. Wu, Chem. Commun. 2017, 53, 5606–5609.
- 83X.-B. Fan, S. Yu, X. Wang, Z.-J. Li, F. Zhan, J.-X. Li, Y.-j. Gao, A.-D. Xia, Y. Tao, X.-B. Li, L.-P. Zhang, C.-H. Tung, L.-Z. Wu, Adv. Mater. 2019, 31, 1804872.
- 84X.-B. Fan, S. Yu, H.-L. Wu, Z.-J. Li, Y.-J. Gao, X.-B. Li, L.-P. Zhang, C.-H. Tung, L.-Z. Wu, J. Mater. Chem. A 2018, 6, 16328–16332.
- 85H. Zhu, N. Song, T. Lian, J. Am. Chem. Soc. 2010, 132, 15038–15045.
- 86A. Thibert, F. A. Frame, E. Busby, M. A. Holmes, F. E. Osterloh, D. S. Larsen, J. Phys. Chem. Lett. 2011, 2, 2688–2694.
- 87L. Huang, X. Wang, J. Yang, G. Liu, J. Han, C. Li, J. Phys. Chem. C 2013, 117, 11584–11591.
- 88Y.-J. Gao, X.-B. Li, H.-L. Wu, S.-L. Meng, X.-B. Fan, M.-Y. Huang, Q. Guo, C.-H. Tung, L.-Z. Wu, Adv. Funct. Mater. 2018, 28, 1801769.
- 89L. Amirav, A. P. Alivisatos, J. Phys. Chem. Lett. 2010, 1, 1051–1054.
- 90M. L. Tang, D. C. Grauer, B. Lassalle-Kaiser, V. K. Yachandra, L. Amirav, J. R. Long, J. Yano, A. P. Alivisatos, Angew. Chem. Int. Ed. 2011, 50, 10203–10207.
- 91P. Wang, M. Wang, J. Zhang, C. Li, X. Xu, Y. Jin, ACS Appl. Mater. Interfaces 2017, 9, 35712–35720.
- 92K. P. Acharya, R. S. Khnayzer, T. O'Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, M. Zamkov, Nano Lett. 2011, 11, 2919–2926.
- 93E. Khon, K. Lambright, R. S. Khnayzer, P. Moroz, D. Perera, E. Butaeva, S. Lambright, F. N. Castellano, M. Zamkov, Nano Lett. 2013, 13, 2016–2023.
- 94K. Wu, L. J. Hill, J. Chen, J. R. McBride, N. G. Pavlopolous, N. E. Richey, J. Pyun, T. Lian, ACS Nano 2015, 9, 4591–4599.
- 95P. Kalisman, Y. Nakibli, L. Amirav, Nano Lett. 2016, 16, 1776–1781.
- 96S. Lee, K. Lee, W. D. Kim, S. Lee, D. J. Shin, D. C. Lee, J. Phys. Chem. C 2014, 118, 23627–23634.
- 97W. Chen, S. Yu, Y. Zhong, X.-B. Fan, L.-Z. Wu, Y. Zhou, New J. Chem. 2018, 42, 4811–4817.
- 98S. Yu, Z.-J. Li, X.-B. Fan, J.-X. Li, F. Zhan, X.-B. Li, Y. Tao, C.-H. Tung, L.-Z. Wu, ChemSusChem 2015, 8, 642–649.
- 99L. Ge, F. Zuo, J. Liu, Q. Ma, C. Wang, D. Sun, L. Bartels, P. Feng, J. Phys. Chem. C 2012, 116, 13708–13714.
- 100Y. Zhong, W. Chen, S. Yu, Z. Xie, S. Wei, Y. Zhou, ACS Omega 2018, 3, 17762–17769.
- 101M. F. Kuehnel, C. E. Creissen, C. D. Sahm, D. Wielend, A. Schlosser, K. L. Orchard, E. Reisner, Angew. Chem. Int. Ed. 2019, 58, 5059–5063.
- 102D. Chen, H. Zhang, Y. Li, Y. Pang, Z. Yin, H. Sun, L.-C. Zhang, S. Wang, M. Saunders, E. Barker, G. Jia, Adv. Mater. 2018, 30, 1803351.
- 103J. Kolny-Olesiak, H. Weller, ACS Appl. Mater. Interfaces 2013, 5, 12221–12237.
- 104M. D. Regulacio, M.-Y. Han, Acc. Chem. Res. 2016, 49, 511–519.
- 105T.-L. Li, C.-D. Cai, T.-F. Yeh, H. Teng, J. Alloys Compd. 2013, 550, 326–330.
- 106Y. Zhou, W. Hu, J. Ludwig, J. Huang, J. Phys. Chem. C 2017, 121, 19031–19035.
- 107M. Sandroni, R. Gueret, K. D. Wegner, P. Reiss, J. Fortage, D. Aldakov, M. N. Collomb, Energy Environ. Sci. 2018, 11, 1752–1761.
- 108X.-B. Fan, S. Yu, F. Zhan, Z.-J. Li, Y.-J. Gao, X.-B. Li, L.-P. Zhang, Y. Tao, C.-H. Tung, L.-Z. Wu, ChemSusChem 2017, 10, 4833–4838.
- 109B. Zhang, Y. Wang, C. Yang, S. Hu, Y. Gao, Y. Zhang, Y. Wang, H. V. Demir, L. Liub, K.-T. Yong, Phys. Chem. Chem. Phys. 2015, 17, 25133–25141.
- 110T. A. Kandiel, G. A. M. Hutton, E. Reisner, Catal. Sci. Technol. 2016, 6, 6536–6541.
- 111X.-Y. Liu, G. Zhang, H. Chen, H. Li, J. Jiang, Y.-T. Long, Z. Ning, Nano Res. 2017, 11, 1379–1388.
- 112M. Jagadeeswararao, S. Dey, A. Nag, C. N. R. Rao, J. Mater. Chem. A 2015, 3, 8276–8279.
- 113G. Gong, Y. Liu, B. Mao, L. Tan, Y. Yang, W. Shi, Appl. Catal. B 2017, 216, 11–19.
- 114Y.-J. Yuan, D.-Q. Chen, M. Xiong, J.-S. Zhong, Z.-Y. Wan, Y. Zhou, S. Liu, Z.-T. Yu, L.-X. Yang, Z.-G. Zou, Appl. Catal. B 2017, 204, 58–66.
- 115T. Kameyama, T. Takahashi, T. Machida, Y. Kamiya, T. Yamamoto, S. Kuwabata, T. Torimoto, J. Phys. Chem. C 2015, 119, 24740–24749.
- 116X.-Y. Liu, H. Chen, R. Wang, Y. Shang, Q. Zhang, W. Li, G. Zhang, J. Su, C. T. Dinh, F. P. G. de Arquer, J. Li, J. Jiang, Q. Mi, R. Si, X. Li, Y. Sun, Y.-T. Long, H. Tian, E. H. Sargent, Z. Ning, Adv. Mater. 2017, 29, 1605646.
- 117G. Fan, C. Wang, J. Fang, Nano Today 2014, 9, 69–84.
- 118T. Nann, S. K. Ibrahim, P.-M. Woi, S. Xu, J. Ziegler, C. J. Pickett, Angew. Chem. Int. Ed. 2010, 49, 1574–1577.
- 119J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, Science 2013, 339, 1057–1060.
- 120S. Yu, X.-B. Fan, X. Wang, J. Li, Q. Zhang, A. Xia, S. Wei, L.-Z. Wu, Y. Zhou, G. R. Patzke, Nat. Commun. 2018, 9, 4009.
- 121I. N. Chakraborty, S. Roy, G. Devatha, A. Rao, P. P. Pillai, Chem. Mater. 2019, 31, 2258–2262.