Synthesis of Colloidal Halide Perovskite Quantum Dots/Nanocrystals: Progresses and Advances
Yongli Zhao
Key Laboratory of Advanced Display Materials and Devices Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorJinhang Li
Key Laboratory of Advanced Display Materials and Devices Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorCorresponding Author
Dr. Yuhui Dong
Key Laboratory of Advanced Display Materials and Devices Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorCorresponding Author
Prof. Jizhong Song
Key Laboratory of Advanced Display Materials and Devices Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorYongli Zhao
Key Laboratory of Advanced Display Materials and Devices Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorJinhang Li
Key Laboratory of Advanced Display Materials and Devices Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorCorresponding Author
Dr. Yuhui Dong
Key Laboratory of Advanced Display Materials and Devices Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorCorresponding Author
Prof. Jizhong Song
Key Laboratory of Advanced Display Materials and Devices Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorGraphical Abstract
Abstract
Colloidal halide perovskite (CHP) quantum dots (QDs)/nanocrystals (NCs) have superior optoelectronic properties, such as high optical absorption coefficient, high photoluminescence quantum yield (PLQY), tunable bandgap, composition-related luminescence, and low manufacturing cost, which have been considered as promising low-dimensional semiconductor materials. Profiting from these unique characteristics, CHP NCs could be widely used in various optoelectronic devices, including light-emitting diodes (LEDs), photodetectors (PDs), solar cells (SCs), and lasers. Synthesis is the basis for the wide use of CHP NCs, which plays a vital role in the research, development and application of CHPs. Therefore, we summarize the recent synthetic strategies, and their influencing factors (e. g., the effects of ligands, and anion exchange). Besides, a summary of their optoelectronic applications is plainly mentioned. Finally, we make a brief prospect and summarize the current problems and possible solutions of this area.
References
- 1
- 1aJ. Song, J. Li, L. Xu, J. Li, F. Zhang, B. Han, Q. Shan, H. Zeng, Adv. Mater. 2018, 30, 1800764;
- 1bZ. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotechnol. 2014, 9, 687–692;
- 1cJ. S. Yao, J. Ge, B. N. Han, K. H. Wang, H. B. Yao, H. L. Yu, J. H. Li, B. S. Zhu, J. Z. Song, C. Chen, Q. Zhang, H. B. Zeng, Y. Luo, S. H. Yu, J. Am. Chem. Soc. 2018, 140, 3626–3634.
- 2
- 2aP. Ramasamy, D. H. Lim, B. Kim, S. H. Lee, M. S. Lee, J. S. Lee, Chem. Commun. 2016, 52, 2067–2070;
- 2bQ. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu, Y. Gao, J. Huang, Appl. Phys. Lett. 2014, 105, 163508;
- 2cS. P. Senanayak, B. Yang, T. H. Thomas, N. Giesbrecht, W. Huang, E. Gann, B. Nair, K. Goedel, S. Guha, X. Moya, C. R. McNeill, P. Docampo, A. Sadhanala, R. H. Friend, H. Sirringhaus, Sci. Adv. 2017, 1;
- 2dW. J. Yin, T. Shi, Y. Yan, Appl. Phys. Lett. 2014, 104, 063903;
- 2eY. Dong, Y. Zou, J. Song, Z. Zhu, J. Li, H. Zeng, Nano Energy 2016, 30, 173–179.
- 3
- 3aA. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050–6051;
- 3bN. J. Jeon, H. Na, E. H. Jung, T. Y. Yang, Y. G. Lee, G. Kim, H. W. Shin, S. Il Seok, J. Lee, J. Seo, Nat. Energy 2018, 3, 682–689;
- 3cN. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476–480;
- 3dK. G. Lim, S. Ahn, Y. H. Kim, Y. Qi, T. W. Lee, Energy Environ. Sci. 2016, 9, 932–939;
- 3eJ. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, Nano Lett. 2013, 13, 1764–1769.
- 4
- 4aH. Li, X. Wang, J. Xu, Q. Zhang, Y. Bando, D. Golberg, Y. Ma, T. Zhai, Adv. Mater. 2013, 25, 3017–3037;
- 4bS. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L. W. Wang, S. R. Leone, P. Yang, PNAS USA 2016, 113, 1993–1998.
- 5
- 5aQ. A. Akkerman, G. Raino, M. V. Kovalenko, L. Manna, Nat. Mater. 2018, 17, 394–405;
- 5bC. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, Inorg. Chem. 2013, 52, 9019–9038.
- 6
- 6aC. C. Stoumpos, M. G. Kanatzidis, Acc. Chem. Res. 2015, 48, 2791–2802;
- 6bC. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, B. W. Wessels, M. G. Kanatzidis, Cryst. Growth Des. 2013, 13, 2722–2727;
- 6cS. Kondo, K. Suzuki, T. Saito, H. Asada, H. Nakagawa, Phys. Rev. B 2004, 70, 205322.
- 7Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry, K. Zhu, Chem. Mater. 2015, 28, 284–292.
- 8L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692–3696.
- 9J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, Adv. Mater. 2015, 27, 7162–7167.
- 10K. Lin, J. Xing, L. N. Quan, F. P. G. d. Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong, Z. Wei, Nature 2018, 562, 245–248.
- 11
- 11aS. Bai, Z. Yuan, F. Gao, J. Mater. Chem. C 2016, 4, 3898–3904;
- 11bG. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, M. V. Kovalenko, Nano Lett. 2015, 15, 5635–5640;
- 11cA. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury, A. Nag, Angew. Chem. Int. Ed. 2015, 127, 15644–15648;
10.1002/ange.201508276 Google Scholar
- 11dF. Zhang, H. Zhong, C. Chen, X. g. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 2015, 9, 4533–4542;
- 11eL. C. Schmidt, A. Pertegas, S. Gonzalez. Carrero, O. Malinkiewicz, S. Agouram, G. Minguez Espallargas, H. J. Bolink, R. E. Galian, J. Perez. Prieto, J. Am. Chem. Soc. 2014, 136, 850–853;
- 11fJ. A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer, K. Z. Milowska, R. Garcia Cortadella, B. Nickel, C. Cardenas. Daw, J. K. Stolarczyk, A. S. Urban, J. Feldmann, Nano Lett. 2015, 15, 6521–6527;
- 11gH. Huang, F. Zhao, L. Liu, F. Zhang, X. g. Wu, L. Shi, B. Zou, Q. Pei, H. Zhong, ACS Appl. Mater. Interfaces 2015, 7, 28128–28133.
- 12
- 12aZ. S. Almutawah, S. C. Watthage, Z. Song, R. H. Ahangharnejhad, K. K. Subedi, N. Shrestha, A. B. Phillips, Y. Yan, R. J. Ellingson, M. J. Heben, MRS Adv. 2018, 3, 3237–3242;
- 12bJ. H. Im, I. H. Jang, N. Pellet, M. Gratzel, N. G. Park, Nat. Nanotechnol. 2014, 9, 927–932;
- 12cD. Di, K. P. Musselman, G. Li, A. Sadhanala, Y. Ievskaya, Q. Song, Z. K. Tan, M. L. Lai, J. L. MacManus. Driscoll, N. C. Greenham, R. H. Friend, J. Phys. Chem. Lett. 2015, 6, 446–450;
- 12dB. Luo, Y. C. Pu, S. A. Lindley, Y. Yang, L. Lu, Y. Li, X. Li, J. Z. Zhang, Angew. Chem. Int. Ed. 2016, 55, 8864–8868; Angew. Chem. 2016, 128, 9010–9014.
- 13S. Ahn, M. H. Park, S. H. Jeong, Y. H. Kim, J. Park, S. Kim, H. Kim, H. Cho, C. Wolf, M. Pei, H. Yang, T. W. Lee, Adv. Funct. Mater. 2018, 1807535.
- 14
- 14aX. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, H. Zeng, Adv. Funct. Mater. 2016, 26, 2435–2445;
- 14bS. Wei, Y. Yang, X. Kang, L. Wang, L. Huang, D. Pan, Inorg. Chem. 2017, 56, 2596–2601.
- 15X. Li, F. Cao, D. Yu, J. Chen, Z. Sun, Y. Shen, Y. Zhu, L. Wang, Y. Wei, Y. Wu, H. Zeng, Small 2017, 13, 1603996.
- 16G. Almeida, O. J. Ashton, L. Goldoni, D. Maggioni, U. Petralanda, N. Mishra, Q. A. Akkerman, I. Infante, H. J. Snaith, L. Manna, J. Am. Chem. Soc. 2018, 140, 14878–14886.
- 17G. Almeida, L. Goldoni, Q. Akkerman, Z. Dang, A. H. Khan, S. Marras, I. Moreels, L. Manna, ACS Nano 2018, 12, 1704–1711.
- 18J. van Embden, A. S. R. Chesman, J. J. Jasieniak, Chem. Mater. 2015, 27, 2246–2285.
- 19Q. A. Akkerman, M. Gandini, F. Di Stasio, P. Rastogi, F. Palazon, G. Bertoni, J. M. Ball, M. Prato, A. Petrozza, L. Manna, Nat. Energy 2016, 2, 16194.
- 20
- 20aY. H. Kim, C. Wolf, Y. T. Kim, H. Cho, W. Kwon, S. Do, A. Sadhanala, C. G. Park, S. W. Rhee, S. H. Im, R. H. Friend, T. W. Lee, ACS Nano 2017, 11, 6586–6593;
- 20bY. H. Kim, G. H. Lee, Y. T. Kim, C. Wolf, H. J. Yun, W. Kwon, C. G. Park, T. W. Lee, Nano Energy 2017, 38, 51–58.
- 21N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897–903.
- 22G. Li, H. Wang, T. Zhang, L. Mi, Y. Zhang, Z. Zhang, W. Zhang, Y. Jiang, Adv. Funct. Mater. 2016, 26, 8478–8486.
- 23
- 23aJ. D. Roo, M. Ibáñez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I. V. Driessche, M. V. Kovalenko, Z. Hens, ACS Nano 2016, 10, 2071–2081;
- 23bQ. A. Akkerman, V. D. Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, L. Manna, J. Am. Chem. Soc. 2015, 137, 10276–10281.
- 24S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang, D. Pan, Chem. Commun. 2016, 52, 7265–7268.
- 25
- 25aY. Gao, X. Peng, J. Am. Chem. Soc. 2015, 137, 4230–4235;
- 25bC. Pu, H. Qin, Y. Gao, J. Zhou, P. Wang, X. Peng, J. Am. Chem. Soc. 2017, 139, 3302–3311.
- 26
- 26aS. Sun, D. Yuan, Y. Xu, A. Wang, Z. Deng, ACS Nano 2016, 10, 3648–3657;
- 26bJ. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han, H. Zeng, Adv. Mater. 2017, 29, 1603885;
- 26cA. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther, Science 2016, 354, 92–95;
- 26dJ. Pan, L. N. Quan, Y. Zhao, W. Peng, B. Murali, S. P. Sarmah, M. Yuan, L. Sinatra, N. M. Alyami, J. Liu, E. Yassitepe, Z. Yang, O. Voznyy, R. Comin, M. N. Hedhili, O. F. Mohammed, Z. H. Lu, D. H. Kim, E. H. Sargent, O. M. Bakr, Adv. Mater. 2016, 28, 8718–8725;
- 26eH. Huang, A. S. Susha, S. V. Kershaw, T. F. Hung, A. L. Rogach, Adv. Sci. 2015, 2, 1500194.
- 27D. Zhang, S. W. Eaton, Y. Yu, L. Dou, P. Yang, J. Am. Chem. Soc. 2015, 137, 9230–9233.
- 28
- 28aS. Zhang, F. Jiang, G. Qu, C. Lin, Mater. Lett. 2008, 62, 2225–2228;
- 28bH. Yuan, E. Debroye, G. Caliandro, K. P. Janssen, J. van Loon, C. E. Kirschhock, J. A. Martens, J. Hofkens, M. B. Roeffaers, ACS Omega 2016, 1, 148–159.
- 29
- 29aY. Bekenstein, B. A. Koscher, S. W. Eaton, P. Yang, A. P. Alivisatos, J. Am. Chem. Soc. 2015, 137, 16008–16011;
- 29bJ. Shamsi, Z. Dang, P. Bianchini, C. Canale, F. D. Stasio, R. Brescia, M. Prato, L. Manna, J. Am. Chem. Soc. 2016, 138, 7240–7243;
- 29cJ. Cho, Y. H. Choi, T. E. O'Loughlin, L. De Jesus, S. Banerjee, Chem. Mater. 2016, 28, 6909–6916.
- 30Z. Liang, S. Zhao, Z. Xu, B. Qiao, P. Song, D. Gao, X. Xu, ACS Appl. Mater. Interfaces 2016, 8, 28824–28830.
- 31
- 31aA. Pan, B. He, X. Fan, Z. Liu, J. J. Urban, A. P. Alivisatos, L. He, Y. Liu, ACS Nano 2016, 10, 7943–7954;
- 31bV. A. Hintermayr, A. F. Richter, F. Ehrat, M. Doblinger, W. Vanderlinden, J. A. Sichert, Y. Tong, L. Polavarapu, J. Feldmann, A. S. Urban, Adv. Mater. 2016, 28, 9478–9485.
- 32F. Krieg, S. T. Ochsenbein, S. Yakunin, S. Ten Brinck, P. Aellen, A. Suess, B. Clerc, D. Guggisberg, O. Nazarenko, Y. Shynkarenko, S. Kumar, C. J. Shih, I. Infante, M. V. Kovalenko, ACS Energy Lett. 2018, 3, 641–646.
- 33
- 33aM. V. Kovalenko, M. Scheele, D. V. Talapin, Science 2009, 324, 1417–1420;
- 33bJ. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, Nat. Mater. 2011, 10, 765–771.
- 34J. Song, T. Fang, J. Li, L. Xu, F. Zhang, B. Han, Q. Shan, H. Zeng, Adv. Mater. 2018, 30, 1805409.
- 35
- 35aB. H. Kang, J. S. Lee, S. W. Lee, S. W. Kim, J. W. Lee, S. A. Gopalan, J. S. Park, D. H. Kwon, J. H. Bae, H. R. Kim, S. W. Kang, Sci. Rep. 2016, 6, 34659;
- 35bZ. Ning, Y. Ren, S. Hoogland, O. Voznyy, L. Levina, P. Stadler, X. Lan, D. Zhitomirsky, E. H. Sargent, Adv. Mater. 2012, 24, 6295–6299.
- 36
- 36aX. Li, Y. B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero. Bermudez, X. Gong, L. N. Quan, J. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z. H. Lu, E. H. Sargent, Nat. Photonics 2018, 12, 159–164;
- 36bC. H. Chuang, P. R. Brown, V. Bulovic, M. G. Bawendi, Nat. Mater. 2014, 13, 796–801;
- 36cL. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. R. Hyun, G. G. Malliaras, T. Hanrath, F. W. Wise, Nat. Nanotechnol. 2012, 7, 369–373;
- 36dD. N. Dirin, S. Dreyfuss, M. I. Bodnarchuk, G. Nedelcu, P. Papagiorgis, G. Itskos, M. V. Kovalenko, J. Am. Chem. Soc. 2014, 136, 6550–6553.
- 37
- 37aY. Tong, E. Bladt, M. F. Ayguler, A. Manzi, K. Z. Milowska, V. A. Hintermayr, P. Docampo, S. Bals, A. S. Urban, L. Polavarapu, J. Feldmann, Angew. Chem. Int. Ed. 2016, 55, 13887–13892; Angew. Chem. 2016, 128, 14091–14096;
- 37bJ. B. Hoffman, A. L. Schleper, P. V. Kamat, J. Am. Chem. Soc. 2016, 138, 8603–8611.
- 38T. C. Jellicoe, J. M. Richter, H. F. Glass, M. Tabachnyk, R. Brady, S. E. Dutton, A. Rao, R. H. Friend, D. Credgington, N. C. Greenham, M. L. Bohm, J. Am. Chem. Soc. 2016, 138, 2941–2944.
- 39D. M. Jang, K. Park, D. H. Kim, J. Park, F. Shojaei, H. S. Kang, J. P. Ahn, J. W. Lee, J. K. Song, Nano Lett. 2015, 15, 5191–5199.
- 40
- 40aA. B. Wong, M. Lai, S. W. Eaton, Y. Yu, E. Lin, L. Dou, A. Fu, P. Yang, Nano Lett. 2015, 15, 5519–5524;
- 40bD. Zhang, Y. Yang, Y. Bekenstein, Y. Yu, N. A. Gibson, A. B. Wong, S. W. Eaton, N. Kornienko, Q. Kong, M. Lai, A. P. Alivisatos, S. R. Leone, P. Yang, J. Am. Chem. Soc. 2016, 138, 7236–7239;
- 40cC. Guhrenz, A. Benad, C. Ziegler, D. Haubold, N. Gaponik, A. Eychmüller, Chem. Mater. 2016, 28, 9033–9040;
- 40dK. Hills. Kimball, Y. Nagaoka, C. Cao, E. Chaykovsky, O. Chen, J. Mater. Chem. C 2017, 5, 5680–5684.
- 41J. Song, L. Xu, J. Li, J. Xue, Y. Dong, X. Li, H. Zeng, Adv. Mater. 2016, 28, 4861–4869.
- 42X. Y. Chin, D. Cortecchia, J. Yin, A. Bruno, C. Soci, Nat. Commun. 2015, 6, 7383.
- 43G. Li, T. Che, X. Ji, S. Liu, Y. Hao, Y. Cui, S. Liu, Adv. Funct. Mater. 2018, 1805553.
- 44J. Wang, N. Wang, Y. Jin, J. Si, Z. K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, M. L. Lai, R. H. Friend, W. Huang, Adv. Mater. 2015, 27, 2311–2316.
- 45Y. H. Kim, H. Cho, T. W. Lee, PNAS 2016, 113, 11694–11702.
- 46H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T. W. Lee, Science 2015, 350, 1222–1225.
- 47Y. H. Kim, H. Cho, J. H. Heo, T. S. Kim, N. Myoung, C. L. Lee, S. H. Im, T. W. Lee, Adv. Mater. 2015, 27, 1248–1254.
- 48G. Li, F. W. R. Rivarola, N. J. L. K. Davis, S. Bai, T. C. Jellicoe, F. d. l. Peña, S. Hou, C. Ducati, F. Gao, R. H. Friend, N. C. Greenham, Z. K. Tan, Adv. Mater. 2016, 28, 3528–3534.
- 49T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y. J. Pu, S. Ohisa, J. Kido, Nat. Photonics 2018, 12, 681–687.
- 50
- 50aQ. Wang, K. Xu, Z. Wang, F. Wang, Y. Huang, M. Safdar, X. Zhan, F. Wang, Z. Cheng, J. He, Nano Lett. 2015, 15, 1183–1189;
- 50bW. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, L. J. Li, Sci. Rep. 2014, 4, 3826.
- 51J. Song, Q. Cui, J. Li, J. Xu, Y. Wang, L. Xu, J. Xue, Y. Dong, T. Tian, H. Sun, H. Zeng, Adv. Opt. Mater. 2017, 5, 1700157.
- 52J. Xue, Z. Zhu, X. Xu, Y. Gu, S. Wang, L. Xu, Y. Zou, J. Song, H. Zeng, Q. Chen, Nano Lett. 2018, 18, 7628–7634.
- 53
- 53aY. Dong, Y. Zou, J. Song, Z. Zhu, J. Li, H. Zeng, Nano Energy 2016, 30, 173–179;
- 53bS. Wang, Y. Zou, Q. Shan, J. Xue, Y. Dong, Y. Gu, J. Song, RSC Adv. 2018, 8, 33666–33673.
- 54
- 54aM. A. Green, A. Ho. Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506–514;
- 54bG. Hodes, Science 2013, 342, 317–318;
- 54cG. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Graetzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344–347;
- 54dH. S. Jung, N. G. Park, Small 2015, 11, 10–25.
- 55
- 55aP. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, H. J. Snaith, Nat. Commun. 2013, 4, 2761;
- 55bA. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, Science 2014, 345, 295–298;
- 55chttps://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20190103.pdf.
- 56A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther, Sci. Adv. 2016, 354, 92–95.
- 57T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, Y. Zhao, Sci. Adv. 2017, 3, e 1700841.
- 58E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, J. M. Luther, Sci. Adv. 2017, 3, eaao 4204.
- 59
- 59aV. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, Science 2000, 290, 314–317;
- 59bW. P. Risk, T. R. Gosnell, A. V. Nurmikko, Cambridge University Press 2003;
- 59cH. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, A. Seeds, Nat. Photonics 2011, 5, 416–419;
- 59dY. Wang, V. D. Ta, Y. Gao, T. C. He, R. Chen, E. Mutlugun, H. V. Demir, H. D. Sun, Adv. Mater. 2014, 26, 2954–2961;
- 59eA. M. Smith, S. Nie, Acc. Chem. Res. 2010, 43, 190–200;
- 59fY. Wang, H. Sun, Prog. Quant. Electron. 2018.
- 60N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897–903.
- 61Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, H. Sun, Adv. Mater. 2015, 27, 7101–7108.
- 62Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, M. Xiao, J. Am. Chem. Soc. 2016, 138, 3761–3768.
- 63C. Y. Huang, C. Zou, C. Mao, K. L. Corp, Y. C. Yao, Y. J. Lee, C. W. Schlenker, A. K. Y. Jen, L. Y. Lin, ACS Photonics 2017, 4, 2281–2289.
- 64Q. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu, Y. Gao, J. Huang, Appl. Phys. Lett. 2014, 105, 163508.
- 65T. Matsushima, S. Hwang, A. S. Sandanayaka, C. Qin, S. Terakawa, T. Fujihara, M. Yahiro, C. Adachi, Adv. Mater. 2016, 28, 10275–10281.
- 66G. Lin, Y. Lin, R. Cui, H. Huang, X. Guo, C. Li, J. Dong, X. Guo, B. Sun, J. Mater. Chem. C 2015, 3, 10793–10798.
- 67C. Zhang, D. Sun, C. X. Sheng, Y. X. Zhai, K. Mielczarek, A. Zakhidov, Z. V. Vardeny, Nat. Phys. 2015, 11, 427–434.
- 68B. Chen, T. Li, Q. Dong, E. Mosconi, J. Song, Z. Chen, Y. Deng, Y. Liu, S. Ducharme, A. Gruverman, F. Angelis, J. Huang, Nat. Mater. 2018, 17, 1020–1026.
- 69
- 69aV. W. Bergmann, Y. Guo, H. Tanaka, I. M. Hermes, D. Li, A. Klasen, S. A. Bretschneider, E. Nakamura, R. D. Berger, S. A. L. Weber, ACS Appl. Mater. Interfaces 2016, 8, 19402–19409;
- 69bP. Calado, A. M. Telford, D. Bryant, X. Li, J. Nelson, B. C. O′Regan, P. R. Barnes, Nat. Commun. 2016, 7, 13831.
- 70
- 70aP. Arunkumar, K. H. Gil, S. Won, S. Unithrattil, Y. H. Kim, H. J. Kim, W. B. Im, J. Phys. Chem. Lett. 2017, 8, 4161–4166;
- 70bS. Zou, Y. Liu, J. Li, C. Liu, R. Feng, F. Jiang, Y. Li, J. Song, H. Zeng, M. Hong, X. Chen, J. Am. Chem. Soc. 2017, 139, 11443–11450;
- 70cJ. Zhu, X. Yang, Y. Zhu, Y. Wang, J. Cai, J. Shen, L. Sun, C. Li, J. Phys. Chem. Lett. 2017, 8, 4167–4171;
- 70dA. Leblanc, N. Mercier, M. Allain, J. Dittmer, V. Fernandez, T. Pauporte, Angew. Chem. Int. Ed. 2017, 56, 16067–16072; Angew. Chem. 2017, 129, 16283–16288.