Increased frequency of 20q gain and copy-neutral loss of heterozygosity in mismatch repair proficient familial colorectal carcinomas
A. Middeldorp
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorR. van Eijk
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorJ. Oosting
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorG.I. Forte
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorM. van Puijenbroek
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorM. van Nieuwenhuizen
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorW.E. Corver
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorD. Ruano
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorT. Caldes
Laboratory of Molecular Oncology, Hospital Clínico San Carlos, Madrid, Spain
Search for more papers by this authorJ. Wijnen
Department of Human Genetics and Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorH. Morreau
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorCorresponding Author
T. van Wezel
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Leiden University Medical Center, Department of Pathology, PO Box 9600, 2300 RC Leiden, The Netherlands, Tel.: +31 71 5266629Search for more papers by this authorA. Middeldorp
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorR. van Eijk
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorJ. Oosting
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorG.I. Forte
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorM. van Puijenbroek
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorM. van Nieuwenhuizen
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorW.E. Corver
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorD. Ruano
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorT. Caldes
Laboratory of Molecular Oncology, Hospital Clínico San Carlos, Madrid, Spain
Search for more papers by this authorJ. Wijnen
Department of Human Genetics and Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorH. Morreau
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorCorresponding Author
T. van Wezel
Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
Leiden University Medical Center, Department of Pathology, PO Box 9600, 2300 RC Leiden, The Netherlands, Tel.: +31 71 5266629Search for more papers by this authorAbstract
Many hereditary nonpolyposis colorectal cancers (CRCs) cannot be explained by Lynch syndrome. Other high penetrance genetic risk factors are likely to play a role in these mismatch repair (MMR)-proficient CRC families. Because genomic profiles of CRC tend to vary with CRC susceptibility syndromes, our aim is to analyze the genomic profile of MMR-proficient familial CRC to obtain insight into the biological basis of MMR-proficient familial CRC. We studied 30 MMR-proficient familial colorectal carcinomas, from 15 families, for genomic aberrations, including gains, physical losses, and copy-neutral loss of heterozygosity LOH (cnLOH) using SNP array comparative genomic hybridization. In addition, we performed somatic mutation analysis for KRAS, BRAF, PIK3CA and GNAS. The frequency of 20q gain (77%) is remarkably increased when compared with sporadic CRC, suggesting that 20q gain is involved in tumor progression of familial CRC. There is also a significant increase in the frequency of cnLOH and, as a consequence, a reduced frequency of physical loss compared with sporadic CRC. The most frequent aberrations observed included gains of 7p, 7q, 8q, 13q, 20p and 20q as well as physical losses of 17p, 18p and 18q. Most of these changes are also observed in sporadic CRC. Mutations in KRAS were identified in 37% of the MMR-proficient CRCs, and mutations in BRAF were identified in 16%. No mutations were identified in PIK3CA or chromosome 20 candidate gene GNAS. We show that the patterns of chromosomal instability of MMR-proficient familial CRC are clearly distinct from those from sporadic CRC. Both the increased gain on chromosome 20 and the increased levels of cnLOH suggest the presence of yet undiscovered germline defects that can, in part, underlie the cancer risk in these families.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
IJC_26093_sm_suppinfotable1.doc30 KB | Supporting Information Table 1. |
IJC_26093_sm_suppinfotable2.pdf36 KB | Supporting Information Table 2. |
IJC_26093_sm_suppinfotable3.pdf46.6 KB | Supporting Information Table 3. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 1999; 116: 1453–6.
- 2 Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Ruschoff J, Fishel R, Lindor NM, Burgart LJ, Hamelin R, Hamilton SR, Hiatt RA, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 2004; 96: 261–8.
- 3 Wijnen JT, Vasen HF, Khan PM, Zwinderman AH, van der Klift H, Mulder A, Tops C, Moller P, Fodde R. Clinical findings with implications for genetic testing in families with clustering of colorectal cancer. N Engl J Med 1998; 339: 511–18.
- 4 de Jong AE, van Puijenbroek M, Hendriks Y, Tops C, Wijnen J, Ausems MG, Meijers-Heijboer H, Wagner A, van Os TA, Brocker-Vriends AH, Vasen HF, Morreau H. Microsatellite instability, immunohistochemistry, and additional PMS2 staining in suspected hereditary nonpolyposis colorectal cancer. Clin Cancer Res 2004; 10: 972–80.
- 5 Aaltonen L, Johns L, Jarvinen H, Mecklin JP, Houlston R. Explaining the familial colorectal cancer risk associated with mismatch repair (MMR)-deficient and MMR-stable tumors. Clin Cancer Res 2007; 13: 356–61.
- 6 Lindor NM, Rabe K, Petersen GM, Haile R, Casey G, Baron J, Gallinger S, Bapat B, Aronson M, Hopper J, Jass J, LeMarchand L, et al. Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA 2005; 293: 1979–85.
- 7 Lubbe SJ, Webb EL, Chandler IP, Houlston RS. Implications of familial colorectal cancer risk profiles and microsatellite instability status. J Clin Oncol 2009; 27: 2238–44.
- 8 Kemp Z, Carvajal-Carmona L, Spain S, Barclay E, Gorman M, Martin L, Jaeger E, Brooks N, Bishop DT, Thomas H, Tomlinson I, Papaemmanuil E, et al. Evidence for a colorectal cancer susceptibility locus on chromosome 3q21-q24 from a high-density SNP genome-wide linkage scan. Hum Mol Genet 2006; 15: 2903–10.
- 9 Middeldorp A, Jagmohan-Changur SC, van der Klift HM, van Puijenbroek M, Houwing-Duistermaat JJ, Webb E, Houlston R, Tops C, Vasen HF, Devilee P, Morreau H, van Wezel T, et al. Comprehensive genetic analysis of seven large families with mismatch repair proficient colorectal cancer. Genes Chromosomes Cancer 2010; 49: 539–48.
- 10 Neklason DW, Kerber RA, Nilson DB, Anton-Culver H, Schwartz AG, Griffin CA, Lowery JT, Schildkraut JM, Evans JP, Tomlinson GE, Strong LC, Miller AR, et al. Common familial colorectal cancer linked to chromosome 7q31: a genome-wide analysis. Cancer Res 2008; 68: 8993–7.
- 11 Papaemmanuil E, Carvajal-Carmona L, Sellick GS, Kemp Z, Webb E, Spain S, Sullivan K, Barclay E, Lubbe S, Jaeger E, Vijayakrishnan J, Broderick P, et al. Deciphering the genetics of hereditary non-syndromic colorectal cancer. Eur J Hum Genet 2008; 16: 1477–86.
- 12 Wiesner GL, Daley D, Lewis S, Ticknor C, Platzer P, Lutterbaugh J, MacMillen M, Baliner B, Willis J, Elston RC, Markowitz SD. A subset of familial colorectal neoplasia kindreds linked to chromosome 9q22.2-31.2. Proc Natl Acad Sci U S A 2003; 100: 12961–5.
- 13 Djureinovic T, Skoglund J, Vandrovcova J, Zhou XL, Kalushkova A, Iselius L, Lindblom A. A genome wide linkage analysis in Swedish families with hereditary non-familial adenomatous polyposis/non-hereditary non-polyposis colorectal cancer. Gut 2006; 55: 362–6.
- 14 Deng G, Bell I, Crawley S, Gum J, Terdiman JP, Allen BA, Truta B, Sleisenger MH, Kim YS. BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin Cancer Res 2004; 10: 191–5.
- 15 Lipton L, Halford SE, Johnson V, Novelli MR, Jones A, Cummings C, Barclay E, Sieber O, Sadat A, Bisgaard ML, Hodgson SV, Aaltonen LA, et al. Carcinogenesis in MYH-associated polyposis follows a distinct genetic pathway. Cancer Res 2003; 63: 7595–9.
- 16 Oliveira C, Westra JL, Arango D, Ollikainen M, Domingo E, Ferreira A, Velho S, Niessen R, Lagerstedt K, Alhopuro P, Laiho P, Veiga I, et al. Distinct patterns of KRAS mutations in colorectal carcinomas according to germline mismatch repair defects and hMLH1 methylation status. Hum Mol Genet 2004; 13: 2303–11.
- 17 van Puijenbroek M, Middeldorp A, Tops CM, van Eijk R, van der Klift HM, Vasen HF, Wijnen JT, Hes FJ, Oosting J, van Wezel T, Morreau H. Genome-wide copy neutral LOH is infrequent in familial and sporadic microsatellite unstable carcinomas. Fam Cancer 2008; 7: 319–30.
- 18 Peltomaki P, Lothe RA, Aaltonen LA, Pylkkanen L, Nystrom-Lahti M, Seruca R, David L, Holm R, Ryberg D, Haugen A. Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome. Cancer Res 1993; 53: 5853–5.
- 19 Middeldorp A, van Puijenbroek M, Nielsen M, Corver W, Jordanova E, Ter Haar N, Tops C, Vasen H, Lips E, van Eijk R, Hes F, Oosting J, et al. High frequency of copy-neutral LOH in MUTYH-associated polyposis carcinomas. J Pathol 2008; 216: 25–31.
- 20 Jonsson G, Naylor TL, Vallon-Christersson J, Staaf J, Huang J, Ward MR, Greshock JD, Luts L, Olsson H, Rahman N, Stratton M, Ringner M, et al. Distinct genomic profiles in hereditary breast tumors identified by array-based comparative genomic hybridization. Cancer Res 2005; 65: 7612–21.
- 21 Wessels LF, van Welsem T, Hart AA, Van't Veer LJ, Reinders MJ, Nederlof PM. Molecular classification of breast carcinomas by comparative genomic hybridization: a specific somatic genetic profile for BRCA1 tumors. Cancer Res 2002; 62: 7110–17.
- 22 Middeldorp A, Jagmohan-Changur S, van Eijk R, Tops C, Devilee P, Vasen HF, Hes FJ, Houlston R, Tomlinson I, Houwing-Duistermaat JJ, Wijnen JT, Morreau H, et al. Enrichment of low penetrance susceptibility loci in a Dutch familial colorectal cancer cohort. Cancer Epidemiol Biomarkers Prev 2009; 18: 3062–7.
- 23 van Puijenbroek M, van Asperen CJ, van Mil A, Devilee P, van Wezel T, Morreau H. Homozygosity for a CHEK2*1100delC mutation identified in familial colorectal cancer does not lead to a severe clinical phenotype. J Pathol 2005; 206: 198–204.
- 24 Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srivastava S. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998; 58: 5248–57.
- 25 Oosting J, Lips EH, van Eijk R, Eilers PH, Szuhai K, Wijmenga C, Morreau H, van Wezel T. High-resolution copy number analysis of paraffin-embedded archival tissue using SNP BeadArrays. Genome Res 2007; 17: 368–76.
- 26 Lips EH, de Graaf EJ, Tollenaar RA, van Eijk R, Oosting J, Szuhai K, Karsten T, Nanya Y, Ogawa S, van de Velde CJ, Eilers PH, van Wezel T, et al. Single nucleotide polymorphism array analysis of chromosomal instability patterns discriminates rectal adenomas from carcinomas. J Pathol 2007; 212: 269–77.
- 27 Lips EH, van Eijk R, de Graaf EJ, Doornebosch PG, Miranda NF, Oosting J, Karsten T, Eilers PH, Tollenaar RA, van Wezel T, Morreau H. Progression and tumor heterogeneity analysis in early rectal cancer. Clin Cancer Res 2008; 14: 772–81.
- 28 The International HapMap Project. Nature 2003; 426: 789–96.
- 29 van Eijk R, van Puijenbroek M, Chhatta AR, Gupta N, Vossen RH, Lips EH, Cleton-Jansen AM, Morreau H, van Wezel T. Sensitive and specific KRAS somatic mutation analysis on whole-genome amplified DNA from archival tissues. J Mol Diagn 2010; 12: 27–34.
- 30 Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A, Teague J, Futreal PA, Stratton MR, Wooster R. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 2004; 91: 355–8.
- 31 Bulow S. Clinical features in familial polyposis coli. Results of the Danish Polyposis Register. Dis Colon Rectum 1986; 29: 102–7.
- 32 Iacopetta B. Are there two sides to colorectal cancer?. Int J Cancer 2002; 101: 403–8.
- 33 Nielsen M, de Miranda NF, van Puijenbroek M, Jordanova ES, Middeldorp A, van Wezel T, van Eijk R, Tops CM, Vasen HF, Hes FJ, Morreau H. Colorectal carcinomas in MUTYH-associated polyposis display histopathological similarities to microsatellite unstable carcinomas. BMC Cancer 2009; 9: 184.
- 34 Llor X, Pons E, Xicola RM, Castells A, Alenda C, Pinol V, Andreu M, Castellvi-Bel S, Paya A, Jover R, Bessa X, Giros A, et al. Differential features of colorectal cancers fulfilling Amsterdam criteria without involvement of the mutator pathway. Clin Cancer Res 2005; 11: 7304–10.
- 35 Abdel-Rahman WM, Ollikainen M, Kariola R, Jarvinen HJ, Mecklin JP, Nystrom-Lahti M, Knuutila S, Peltomaki P. Comprehensive characterization of HNPCC-related colorectal cancers reveals striking molecular features in families with no germline mismatch repair gene mutations. Oncogene 2005; 24: 1542–51.
- 36 Diep CB, Kleivi K, Ribeiro FR, Teixeira MR, Lindgjaerde OC, Lothe RA. The order of genetic events associated with colorectal cancer progression inferred from meta-analysis of copy number changes. Genes Chromosomes Cancer 2006; 45: 31–41.
- 37 Salazar R, Roepman P, Capella G, Moreno V, Simon I, Dreezen C, Lopez-Doriga A, Santos C, Marijnen C, Westerga J, Bruin S, Kerr D, et al. Gene expression signature to improve prognosis prediction of Stage II and III colorectal cancer. J Clin Oncol 2010; 29: 17–24.
- 38 Kurashina K, Yamashita Y, Ueno T, Koinuma K, Ohashi J, Horie H, Miyakura Y, Hamada T, Haruta H, Hatanaka H, Soda M, Choi YL, et al. Chromosome copy number analysis in screening for prognosis-related genomic regions in colorectal carcinoma. Cancer Sci 2008; 99: 1835–40.
- 39 Laiho P, Hienonen T, Karhu A, Lipton L, Aalto Y, Thomas HJ, Birkenkamp-Demtroder K, Hodgson S, Salovaara R, Mecklin JP, Jarvinen H, Knuutila S, et al. Genome-wide allelotyping of 104 Finnish colorectal cancers reveals an excess of allelic imbalance in chromosome 20q in familial cases. Oncogene 2003; 22: 2206–14.
- 40 Berg M, Agesen TH, Thiis-Evensen E, Merok MA, Teixeira MR, Vatn MH, Nesbakken A, Skotheim RI, Lothe RA. Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci. Mol Cancer 2010; 9: 100.
- 41 Carvalho B, Postma C, Mongera S, Hopmans E, Diskin S, van de Wiel MA, van Criekinge W, Thas O, Matthai A, Cuesta MA, Terhaar Sive Droste JS, Craanen M, et al. Multiple putative oncogenes at the chromosome 20q amplicon contribute to colorectal adenoma to carcinoma progression. Gut 2009; 58: 79–89.
- 42 Lips EH, van Eijk R, de Graaf EJ, Oosting J, Miranda NF, Karsten T, van de Velde CJ, Eilers PH, Tollenaar RA, van Wezel T, Morreau H. Integrating chromosomal aberrations and gene expression profiles to dissect rectal tumorigenesis. BMC Cancer 2008; 8: 314.
- 43 Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006; 314: 268–74.
- 44 Tenesa A, Dunlop MG. New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet 2009; 10: 353–8.
- 45 Tuupanen S, Niittymaki I, Nousiainen K, Vanharanta S, Mecklin JP, Nuorva K, Jarvinen H, Hautaniemi S, Karhu A, Aaltonen LA. Allelic imbalance at rs6983267 suggests selection of the risk allele in somatic colorectal tumor evolution. Cancer Res 2008; 68: 14–17.
- 46 Pittman AM, Naranjo S, Webb E, Broderick P, Lips EH, van Wezel T, Morreau H, Sullivan K, Fielding S, Twiss P, Vijayakrishnan J, Casares F, et al. The colorectal cancer risk at 18q21 is caused by a novel variant altering SMAD7 expression. Genome Res 2009; 19: 987–93.
- 47 Pittman AM, Naranjo S, Jalava SE, Twiss P, Ma Y, Olver B, Lloyd A, Vijayakrishnan J, Qureshi M, Broderick P, van Wezel T, Morreau H, et al. Allelic variation at the 8q23.3 colorectal cancer risk locus functions as a cis-acting regulator of EIF3H. PLoS Genet 2010; 6: e1001126.
- 48 Sanchez-de-Abajo A, de la Hoya M, van Puijenbroek M, Tosar A, Lopez-Asenjo JA, Diaz-Rubio E, Morreau H, Caldes T. Molecular analysis of colorectal cancer tumors from patients with mismatch repair proficient hereditary nonpolyposis colorectal cancer suggests novel carcinogenic pathways. Clin Cancer Res 2007; 13: 5729–35.
- 49 Ollikainen M, Gylling A, Puputti M, Nupponen NN, Abdel-Rahman WM, Butzow R, Peltomaki P. Patterns of PIK3CA alterations in familial colorectal and endometrial carcinoma. Int J Cancer 2007; 121: 915–20.
- 50 Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004; 304: 554.