Upregulation of manganese superoxide dismutase (SOD2) is a common pathway for neuroendocrine differentiation in prostate cancer cells
Isabel Quirós
Instituto Universitario Oncológico del Principado de Asturias (IUOPA), Oviedo, Spain
Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
Search for more papers by this authorRosa M. Sáinz
Instituto Universitario Oncológico del Principado de Asturias (IUOPA), Oviedo, Spain
Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
Search for more papers by this authorDavid Hevia
Instituto Universitario Oncológico del Principado de Asturias (IUOPA), Oviedo, Spain
Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
Search for more papers by this authorOlivia García-Suárez
Instituto Universitario Oncológico del Principado de Asturias (IUOPA), Oviedo, Spain
Servicio de Anatomía Patológica, Hospital Central de Asturias, Oviedo, Spain
Search for more papers by this authorAurora Astudillo
Instituto Universitario Oncológico del Principado de Asturias (IUOPA), Oviedo, Spain
Servicio de Anatomía Patológica, Hospital Central de Asturias, Oviedo, Spain
Search for more papers by this authorManuel Rivas
Instituto Universitario Oncológico del Principado de Asturias (IUOPA), Oviedo, Spain
Servicio de Urología, Hospital de Cabueñes, Gijón, Spain
Search for more papers by this authorCorresponding Author
Juan C. Mayo
Instituto Universitario Oncológico del Principado de Asturias (IUOPA), Oviedo, Spain
Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Julián Clavería, 6, 33006 Oviedo, SpainSearch for more papers by this authorIsabel Quirós
Instituto Universitario Oncológico del Principado de Asturias (IUOPA), Oviedo, Spain
Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
Search for more papers by this authorRosa M. Sáinz
Instituto Universitario Oncológico del Principado de Asturias (IUOPA), Oviedo, Spain
Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
Search for more papers by this authorDavid Hevia
Instituto Universitario Oncológico del Principado de Asturias (IUOPA), Oviedo, Spain
Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
Search for more papers by this authorOlivia García-Suárez
Instituto Universitario Oncológico del Principado de Asturias (IUOPA), Oviedo, Spain
Servicio de Anatomía Patológica, Hospital Central de Asturias, Oviedo, Spain
Search for more papers by this authorAurora Astudillo
Instituto Universitario Oncológico del Principado de Asturias (IUOPA), Oviedo, Spain
Servicio de Anatomía Patológica, Hospital Central de Asturias, Oviedo, Spain
Search for more papers by this authorManuel Rivas
Instituto Universitario Oncológico del Principado de Asturias (IUOPA), Oviedo, Spain
Servicio de Urología, Hospital de Cabueñes, Gijón, Spain
Search for more papers by this authorCorresponding Author
Juan C. Mayo
Instituto Universitario Oncológico del Principado de Asturias (IUOPA), Oviedo, Spain
Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Julián Clavería, 6, 33006 Oviedo, SpainSearch for more papers by this authorAbstract
Despite improvements in diagnosis of advanced prostate cancer (PCa), treatment is not efficient and 5-year survival is still low. Initially, the less abundant of cell types, neuroendocrine cells (NE), are involved in regulatory process but their physiological role is not fully understood. Among others, an increase in NE cells along with tumor progression has been commonly reported but their role in tumorigenesis or the molecular mechanisms of transdifferentiation is still a matter of debate. We have used human PCa cells (LNCaP) induced to differentiate to NE cells with several stimuli: androgen withdrawal, cyclic AMP or treatment with the antioxidant pineal hormone melatonin. PCa patients' specimens were also analyzed by western blotting and by immunocytochemistry. NE-like LNCaP cells express high levels of mitochondrial superoxide dismutase (MnSOD/SOD2) in addition to NE markers. MnSOD upregulation is mediated by NFκB transcription factor, mainly through p65 translocation into the nuclei. More importantly, overexpression of MnSOD induces the rise of NE-markers in LNCaP cells, showing that MnSOD upregulation might be instrumental for NE differentiation in PCa cells. Furthermore, MnSOD is highly expressed in advanced tumors of patients' when compared with control, nonpathological samples or with low-grade tumors, along with the presence of synaptophysin, a common NE marker. Also, fluorescence immunohistochemical analysis revealed that MnSOD colocalizes with NE markers in most of NE cells observed in PCa specimens. The present findings indicate that MnSOD is essential for NE transdifferentiation and mediates in part the differentiation process, which appears also to be critical in vivo. © 2009 UICC
References
- 1 Tomlins SA,Rubin MA,Chinnaiyan AM. Integrative biology of prostate cancer progression. Annu Rev Pathol 2006; 1: 243–71.
- 2 Feldman BJ,Feldman D. The development of androgen-independent prostate cancer. Nat Rev 2001; 1: 34–45.
- 3 Nelson EC,Cambio AJ,Yang JC,Ok JH,Lara PN,Jr,Evans CP. Clinical implications of neuroendocrine differentiation in prostate cancer. Prostate Cancer Prostatic Dis 2007; 10: 6–14.
- 4 Cindolo L,Cantile M,Vacherot F,Terry S,de la Taille A. Neuroendocrine differentiation in prostate cancer: from lab to bedside. Urol Int 2007; 79: 287–96.
- 5 Montuenga LM,Guembe L,Burrell MA,Bodegas ME,Calvo A,Sola JJ,Sesma P,Villaro AC. The diffuse endocrine system: from embryogenesis to carcinogenesis. Prog Histochem Cytochem 2003; 38: 155–272.
- 6 Slovin SF. Neuroendocrine differentiation in prostate cancer: a sheep in wolf's clothing? Nat Clin Pract Urol 2006; 3: 138–44.
- 7 Wright ME,Tsai MJ,Aebersold R. Androgen receptor represses the neuroendocrine transdifferentiation process in prostate cancer cells. Mol Endocrinol 2003; 17: 1726–37.
- 8 Cox ME,Deeble PD,Lakhani S,Parsons SJ. Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible: implications for prostate cancer progression. Cancer Res 1999; 59: 3821–30.
- 9 Qiu Y,Robinson D,Pretlow TG,Kung HJ. Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain, is an effector of phosphatidylinositol 3′-kinase and is involved in interleukin 6-induced neuroendocrine differentiation of prostate cancer cells. Proc Natl Acad Sci USA 1998; 95: 3644–9.
- 10 Sainz RM,Mayo JC,Tan DX,Leon J,Manchester L,Reiter RJ. Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. Prostate 2005; 63: 29–43.
- 11 Mukhopadhyay A,Bueso-Ramos C,Chatterjee D,Pantazis P,Aggarwal BB. Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 2001; 20: 7597–609.
- 12 Collado B,Gutierrez-Canas I,Rodriguez-Henche N,Prieto JC,Carmena MJ. Vasoactive intestinal peptide increases vascular endothelial growth factor expression and neuroendocrine differentiation in human prostate cancer LNCaP cells. Regul Pept 2004; 119: 69–75.
- 13 McConkey DJ,Greene G,Pettaway CA. Apoptosis resistance increases with metastatic potential in cells of the human LNCaP prostate carcinoma line. Cancer Res 1996; 56: 5594–9.
- 14 Bruckheimer EM,Brisbay S,Johnson DJ,Gingrich JR,Greenberg N,McDonnell TJ. Bcl-2 accelerates multistep prostate carcinogenesis in vivo. Oncogene 2000; 19: 5251–8.
- 15 Karin M. NF-kappaB and cancer: mechanisms and targets. Mol Carcinog 2006; 45: 355–61.
- 16 Harman D. Free radical theory of aging: effect of free radical reaction inhibitors on the mortality rate of male LAF mice. J Gerontol 1968; 23: 476–82.
- 17 Hussain SP,Hofseth LJ,Harris CC. Radical causes of cancer. Nature Rev 2003; 3: 276–85.
- 18 Yamanaka N,Deamer D. Superoxide dismutase activity in WI-38 cell cultures: effects of age, trypsinization and SV-40 transformation. Physiol Chem Phys 1974; 6: 95–106.
- 19 Oberley LW,Oberley TD. Role of antioxidant enzymes in cell immortalization and transformation. Mol Cell Biochem 1988; 84: 147–53.
- 20 Oberley TD. Mitochondria, manganese superoxide dismutase, and cancer. Antioxid Redox Signal 2004; 6: 483–7.
- 21 Ridnour LA,Oberley TD,Oberley LW. Tumor suppressive effects of MnSOD overexpression may involve imbalance in peroxide generation versus peroxide removal. Antioxid Redox Signal 2004; 6: 501–12.
- 22 Sharifi N,Hurt EM,Thomas SB,Farrar WL. Effects of manganese superoxide dismutase silencing on androgen receptor function and gene regulation: implications for castration-resistant prostate cancer. Clin Cancer Res 2008; 14: 6073–80.
- 23 Crapo JD,McCord JM,Fridovich I. Preparation and assay of superoxide dismutases. Methods Enzymol 1978; 53: 382–93.
- 24 Sainz RM,Reiter RJ,Tan DX,Roldan F,Natarajan M,Quiros I,Hevia D,Rodriguez C,Mayo JC. Critical role of glutathione in melatonin enhancement of tumor necrosis factor and ionizing radiation-induced apoptosis in prostate cancer cells in vitro. J Pineal Res 2008; 45: 258–70.
- 25 Bravard A,Sabatier L,Hoffschir F,Ricoul M,Luccioni C,Dutrillaux B. SOD2: a new type of tumor-suppressor gene? Int J Cancer 1992; 51: 476–80.
- 26 Mayo JC,Sainz RM,Antoli I,Herrera F,Martin V,Rodriguez C. Melatonin regulation of antioxidant enzyme gene expression. Cell Mol Life Sci 2002; 59: 1706–13.
- 27 Halliwell B,Gutteridge JMC. Free radicals in biology and medicine, 4th edn. New York: Oxford University Press, 2007.
- 28 Lebovitz RM,Zhang H,Vogel H,Cartwright J,Jr,Dionne L,Lu N,Huang S,Matzuk MM. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci USA 1996; 93: 9782–7.
- 29 Burch PM,Heintz NH. Redox regulation of cell-cycle re-entry: cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species. Antioxid Redox Signal 2005; 7: 741–51.
- 30 Oberley LW,Ridnour LA,Sierra-Rivera E,Oberley TD,Guernsey DL. Superoxide dismutase activities of differentiating clones from an immortal cell line. J Cell Physiol 1989; 138: 50–60.
- 31 Fang GC,Hanau RM,Vaillancourt LJ. The SOD2 gene, encoding a manganese-type superoxide dismutase, is up-regulated during conidiogenesis in the plant-pathogenic fungus Colletotrichum graminicola. Fungal Genet Biol 2002; 36: 155–65.
- 32 Kiningham KK,Cardozo ZA,Cook C,Cole MP,Stewart JC,Tassone M,Coleman MC,Spitz DR. All-trans-retinoic acid induces manganese superoxide dismutase in human neuroblastoma through NF-kappaB. Free Radic Biol Med 2008; 44: 1610–6.
- 33 Mariucci G,Ambrosini MV,Colarieti L,Bruschelli G. Differential changes in Cu, Zn and Mn superoxide dismutase activity in developing rat brain and liver. Experientia 1990; 46: 753–5.
- 34 St Clair DK,Oberley TD,Muse KE,St Clair WH. Expression of manganese superoxide dismutase promotes cellular differentiation. Free Radic Biol Med 1994; 16: 275–82.
- 35 Zhao Y,Kiningham KK,Lin SM,St Clair DK. Overexpression of MnSOD protects murine fibrosarcoma cells (FSa-II) from apoptosis and promotes a differentiation program upon treatment with 5-azacytidine: involvement of MAPK and NFkappaB pathways. Antioxid Redox Signal 2001; 3: 375–86.
- 36 Sarsour EH,Venkataraman S,Kalen AL,Oberley LW,Goswami PC. Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth. Aging Cell 2008; 7: 405–17.
- 37 Franco AA,Odom RS,Rando TA. Regulation of antioxidant enzyme gene expression in response to oxidative stress and during differentiation of mouse skeletal muscle. Free Radic Biol Med 1999; 27: 1122–32.
- 38 Fan M,Ahmed KM,Coleman MC,Spitz DR,Li JJ. Nuclear factor-kappaB and manganese superoxide dismutase mediate adaptive radioresistance in low-dose irradiated mouse skin epithelial cells. Cancer Res 2007; 67: 3220–8.
- 39 Deng X,Liu H,Huang J,Cheng L,Keller ET,Parsons SJ,Hu CD. Ionizing radiation induces prostate cancer neuroendocrine differentiation through interplay of CREB and ATF2: implications for disease progression. Cancer Res 2008; 68: 9663–70.
- 40 Zi X,Agarwal R. Silibinin decreases prostate-specific antigen with cell growth inhibition via G1 arrest, leading to differentiation of prostate carcinoma cells: implications for prostate cancer intervention. Proc Natl Acad Sci USA 1999; 96: 7490–5.
- 41 Roy S,Kaur M,Agarwal C,Tecklenburg M,Sclafani RA,Agarwal R. p21 and p27 induction by silibinin is essential for its cell cycle arrest effect in prostate carcinoma cells. Mol Cancer Ther 2007; 6: 2696–707.
- 42 Shukla S,Gupta S. Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation. Free Radic Biol Med 2008; 44: 1833–45.
- 43 Xiang N,Zhao R,Zhong W. Sodium selenite induces apoptosis by generation of superoxide via the mitochondrial-dependent pathway in human prostate cancer cells. Cancer Chemother Pharmacol 2008; 63: 351–62.
- 44 Hirano D,Okada Y,Minei S,Takimoto Y,Nemoto N. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Urol 2004; 45: 586–92; discussion 92.
- 45 Hansson J,Abrahamsson PA. Neuroendocrine differentiation in prostatic carcinoma. Scand J Urol Nephrol Suppl 2003: 28–36.
- 46 Yuan TC,Veeramani S,Lin MF. Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocr Relat Cancer 2007; 14: 531–47.