Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo†
Jérôme Alexandre
UPRES 1833, Groupe Hospitalier Cochin, Assistance Publique – Hôpitaux de Paris; Faculté de Médecine Paris 5, France
Search for more papers by this authorFrédéric Batteux
UPRES 1833, Groupe Hospitalier Cochin, Assistance Publique – Hôpitaux de Paris; Faculté de Médecine Paris 5, France
Search for more papers by this authorCarole Nicco
UPRES 1833, Groupe Hospitalier Cochin, Assistance Publique – Hôpitaux de Paris; Faculté de Médecine Paris 5, France
Search for more papers by this authorChristiane Chéreau
UPRES 1833, Groupe Hospitalier Cochin, Assistance Publique – Hôpitaux de Paris; Faculté de Médecine Paris 5, France
Search for more papers by this authorAlexis Laurent
UPRES 1833, Groupe Hospitalier Cochin, Assistance Publique – Hôpitaux de Paris; Faculté de Médecine Paris 5, France
Search for more papers by this authorLoïc Guillevin
UPRES 1833, Groupe Hospitalier Cochin, Assistance Publique – Hôpitaux de Paris; Faculté de Médecine Paris 5, France
Search for more papers by this authorBernard Weill
UPRES 1833, Groupe Hospitalier Cochin, Assistance Publique – Hôpitaux de Paris; Faculté de Médecine Paris 5, France
Search for more papers by this authorCorresponding Author
François Goldwasser
UPRES 1833, Groupe Hospitalier Cochin, Assistance Publique – Hôpitaux de Paris; Faculté de Médecine Paris 5, France
Fax: +[33-1-58-41-15-79].
Unité d'Oncologie Médicale, Service de Médecine Interne, Groupe Hospitalier Cochin, 27 rue du faubourg Saint Jacques 75014 Paris, FranceSearch for more papers by this authorJérôme Alexandre
UPRES 1833, Groupe Hospitalier Cochin, Assistance Publique – Hôpitaux de Paris; Faculté de Médecine Paris 5, France
Search for more papers by this authorFrédéric Batteux
UPRES 1833, Groupe Hospitalier Cochin, Assistance Publique – Hôpitaux de Paris; Faculté de Médecine Paris 5, France
Search for more papers by this authorCarole Nicco
UPRES 1833, Groupe Hospitalier Cochin, Assistance Publique – Hôpitaux de Paris; Faculté de Médecine Paris 5, France
Search for more papers by this authorChristiane Chéreau
UPRES 1833, Groupe Hospitalier Cochin, Assistance Publique – Hôpitaux de Paris; Faculté de Médecine Paris 5, France
Search for more papers by this authorAlexis Laurent
UPRES 1833, Groupe Hospitalier Cochin, Assistance Publique – Hôpitaux de Paris; Faculté de Médecine Paris 5, France
Search for more papers by this authorLoïc Guillevin
UPRES 1833, Groupe Hospitalier Cochin, Assistance Publique – Hôpitaux de Paris; Faculté de Médecine Paris 5, France
Search for more papers by this authorBernard Weill
UPRES 1833, Groupe Hospitalier Cochin, Assistance Publique – Hôpitaux de Paris; Faculté de Médecine Paris 5, France
Search for more papers by this authorCorresponding Author
François Goldwasser
UPRES 1833, Groupe Hospitalier Cochin, Assistance Publique – Hôpitaux de Paris; Faculté de Médecine Paris 5, France
Fax: +[33-1-58-41-15-79].
Unité d'Oncologie Médicale, Service de Médecine Interne, Groupe Hospitalier Cochin, 27 rue du faubourg Saint Jacques 75014 Paris, FranceSearch for more papers by this authorThis work was presented in part at the 95th meeting of American Association of Cancer Research (Orlando, March 27–31, 2004).
Abstract
Intracellular events following paclitaxel binding to microtubules that lead to cell death remain poorly understood. Because reactive oxygen species (ROS) are involved in the cytotoxicity of anticancer agents acting through independent molecular targets, we explored the role of ROS in paclitaxel cytotoxicity. Within 15 min after in vitro exposure of A549 human lung cancer cells to paclitaxel, a concentration-dependent intracellular increase in O°2− and H2O2 levels was detected by spectrofluorometry. Addition of N-acetylcysteine (NAC) or glutathione, two H2O2 scavenger, induced a 4-fold increase in paclitaxel IC50. Delaying NAC co-incubation by 4 hr, resulted in a 3-fold reduction in cell protection. The glutathione synthesis inhibitor, buthionine sulfoximine significantly increased paclitaxel cytotoxicity and H2O2 accumulation, but did not modify O°2− levels. Co-incubation with diphenylene iodonium suggested that paclitaxel induced-O°2− production was in part associated with increased activity of cytoplasmic NADPH oxidase. Concomitant treatment with inhibitors of caspases 3 and 8 increased cell survival but did not prevent the early accumulation of H2O2. To evaluate the role of ROS in paclitaxel antitumoral activity, mice were injected with LLC1 lung cancer cells and treated with paclitaxel i.p. and/or NAC. The antitumoral activity of paclitaxel in mice was abolished by NAC. In conclusion, the accumulation of H2O2 is an early and crucial step for paclitaxel-induced cancer cell death before the commitment of the cells into apoptosis. These results suggest that ROS participate in vitro and in vivo to paclitaxel cytotoxicity. © 2006 Wiley-Liss, Inc.
References
- 1 Fan S, Smith ML, Rivet DJ,II, Duba D, Zhan Q, Kohn KW, Fornace AJ,Jr, O'Connor PM. Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res 1995; 55: 1649–54.
- 2 Goldwasser F, Shimizu T, Jackman J, Hoki Y, O'Connor PM, Kohn KW, Pommier Y. Correlations between S and G2 arrest and the cytotoxicity of camptothecin in human colon carcinoma cells. Cancer Res 1996; 56: 4430–7.
- 3 Blagosklonny MV, Bishop PC, Robey R, Fojo T, Bates SE. Loss of cell cycle control allows selective microtubule-active drug-induced Bcl-2 phosphorylation and cytotoxicity in autonomous cancer cells. Cancer Res 2000; 60: 3425–8.
- 4 Macip S, Igarashi M, Fang L, Chen A, Pan ZQ, Lee SW, Aaronson SA. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 2002; 21: 2180–8.
- 5 Rosato RR, Almenara JA, Grant S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res 2003; 63: 3637–45.
- 6 Liu G, Chen X. The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis. Oncogene 2002; 21: 7195–204.
- 7 Hwang PM, Bunz F, Yu J, Rago C, Chan TA, Murphy MP, Kelso GF, Smith RA, Kinzler KW, Vogelstein B. Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells. Nat Med 2001; 7: 1111–7.
- 8 Huang HL, Fang LW, Lu SP, Chou CK, Luh TY, Lai MZ. DNA-damaging reagents induce apoptosis through reactive oxygen species-dependent Fas aggregation. Oncogene 2003; 22: 8168–77.
- 9 Benhar M, Dalyot I, Engelberg D, Levitzki. Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Mol Cell Biol 2001; 21: 6913–26.
- 10 Sasada T, Iwata S, Sato N, Kitaoka Y, Hirota K, Nakamura K, Nishiyama A, Taniguchi Y, Takabayashi A, Yodoi J. Redox control of resistance to cis-diamminedichloroplatinum (II) (CDDP): protective effect of human thioredoxin against CDDP-induced cytotoxicity. J Clin Invest 1996; 97: 2268–76.
- 11 Macip S, Igarashi M, Berggren P, Yu J, Lee SW, Aaronson SA. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol Cell Biol 2003; 23: 8576–85.
- 12 Jung MS, Jin DH, Chae HD, Kang S, Kim SC, Bang YJ, Choi TS, Choi KS, Shin DY. Bcl-xL and E1B-19K proteins inhibit p53-induced irreversible growth arrest and senescence by preventing reactive oxygen species-dependent p38 activation. J Biol Chem 2004; 279: 17765–71.
- 13 Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S, Cordon-Cardo C, Pelletier J, Lowe SW. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 2004; 428: 332–7.
- 14 Schiff PB, Horwitz SB. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 1980; 77: 1561–5.
- 15 Jordan MA, Toso RJ, Thrower D, Wilson L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci USA 1993; 90: 9552–6.
- 16 Jordan MA, Wendell K, Gardiner S, Derry WB, Copp H, Wilson L. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res 1996; 56: 816–25.
- 17 Torres K, Horwitz SB. Mechanisms of Taxol-induced cell death are concentration dependent. Cancer Res 1998; 58: 3620–6.
- 18 Chen JG, Horwitz SB. Differential mitotic responses to microtubule-stabilizing and -destabilizing drugs. Cancer Res 2002; 62: 1935–8.
- 19 Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB. Mechanisms of taxol resistance related to microtubules. Oncogene 2003; 22: 7280–95.
- 20 Idziorek T, Estaquier J, De Bels F, Ameisen JC. YOPRO-1 permits cytofluorometric analysis of programmed cell death (apoptosis) without interfering with cell viability. J Immunol Methods 1995; 185: 249–58.
- 21 Rice GC, Bump EA, Shrieve DC, Lee W, Kovacs M. Quantitative analysis of cellular glutathione by flow cytometry utilizing monochlorobimane: some applications to radiation and drug resistance in vitro and in vivo. Cancer Res 1986; 46: 6105–10.
- 22 Laurent A, Nicco C, Chereau C, Goulvestre C, Alexandre J, Alves A, Levy E, Goldwasser F, Panis Y, Soubrane O, Weill B, Batteux F. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 2005; 65: 948–56.
- 23 Izzotti A, Balansky RM, Dagostini F, Bennicelli C, Myers SR, Grubbs CJ, Lubet RA, Kelloff GJ, De Flora S. Modulation of biomarkers by chemopreventive agents in smoke-exposed rats. Cancer Res 2001; 61: 2472–9.
- 24 Martello LA, McDaid HM, Regl DL, Yang CP, Meng D, Pettus TR, Kaufman MD, Arimoto H, Danishefsky SJ, Smith AB,III, Horwitz SB. Taxol and discodermolide represent a synergistic drug combination in human carcinoma cell lines. Clin Cancer Res 2000; 6: 1978–87.
- 25 Kingston DGI, Samaranayake G, Ivey CA. The chemistry of Taxol, a clinically useful anticancer agent. J Nat Prod 1990; 53: 1.
- 26 Huizing MT, Keung AC, Rosing H, van der kuij V, ten Bokkel Huinink WW, Mandjes IM, Dubbelman AC, Pinedo HM, Beijnen JH. Pharmacokinetics of paclitaxel and metabolites in a randomized comparative study in platinum-pretreated ovarian cancer patients. J Clin Oncol 1993; 11: 2127–35.
- 27 Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 2000; 25: 502–8.
- 28 Babior BM. NADPH oxidase. Curr Opin Immunol 2004; 16: 42–4.
- 29 Diebold BA, Fowler B, Lu J, Dinauer MC, Bokoch GM. Antagonistic crosstalk between Rac and Cdc42 GTPases regulates generation of reactive oxygen species. J Biol Chem 2004; 279: 28136–42.
- 30 Zang M, Waelde CA, Xiang X, Rana A, Wen R, Luo Z. Microtubule integrity regulates Pak leading to Ras-independent activation of Raf-1. Insights into mechanisms of Raf-1 activation. J Biol Chem 2001; 276: 25157–65.
- 31 Andre N, Braguer D, Brasseur G, Goncalves A, Lemesle-Meunier D, Guise S, Jordan MA, Briand C. Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells'. Cancer Res 2000; 60: 5349–53.
- 32 Andre N, Carre M, Brasseur G, Pourroy B, Kovacic H, Briand C, Braguer D. Paclitaxel targets mitochondria upstream of caspase activation in intact human neuroblastoma cells. FEBS Lett 2002; 532: 256–60.
- 33 Carre M, Andre N, Carles G, Borghi H, Brichese L, Briand C, Braguer D. Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. J Biol Chem 2002; 277: 33664–9.
- 34 Goncalves A, Braguer D, Carles G, Andre N, Prevot C, Briand C. Caspase-8 activation independent of CD95/CD95-L interaction during paclitaxel-induced apoptosis in human colon cancer cells (HT29-D4). Biochem Pharmacol 2000; 60: 1579–84.
- 35 Von Haefen C, Wieder T, Essmann F, Schulze-Osthoff K, Dorken B, Daniel PT. Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial amplification loop. Oncogene 2003; 22: 2236–47.
- 36 Shiah SG, Chuang SE, Chau YP, Shen SC, Kuo ML. Activation of c-Jun NH2-terminal kinase and subsequent CPP32/Yama during topoisomerase inhibitor beta-lapachone-induced apoptosis through an oxidation-dependent pathway. Cancer Res 1999; 59: 391–8.
- 37 Wang TH, Wang HS, Ichijo H, Giannakakou P, Foster JS, Fojo T, Wimalasena J. Microtubule-interfering agents activate c-Jun N-terminal kinase/stress-activated protein kinase through both Ras and apoptosis signal-regulating kinase pathways. J Biol Chem 1998; 273: 4928–36.
- 38 Amato SF, Swart JM, Berg M, Wanebo HJ, Mehta SR, Chiles TC. Transient stimulation of the c-Jun-NH2-terminal kinase/activator protein 1 pathway and inhibition of extracellular signal-regulated kinase are early effects in paclitaxel-mediated apoptosis in human B lymphoblasts. Cancer Res 1998; 58: 241–7.
- 39 Wang TH, Popp DM, Wang HS, Saitoh M, Mural JG, Henley DC, Ichijo H, Wimalasena J. Microtubule dysfunction induced by paclitaxel initiates apoptosis through both c-Jun N-terminal kinase (JNK)-dependent and -independent pathways in ovarian cancer cells. J Biol Chem 1999; 274: 8208–16.
- 40 Park SJ, Wu CH, Gordon JD, Zhong X, Emami A, Safa AR. Taxol induces caspase-10-dependent apoptosis. J Biol Chem 2004; 279: 51057–67.
- 41 Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME. Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Chem 1999; 274: 22532–8.
- 42 Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 1989; 6: 593–7.
- 43 Benhar M, Engelberg D, Levitzki A. ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep 2002; 3: 420–5.
- 44 De flora S, Izzotti A, D'Agostini F, Balansky RM. Mechanisms of N-acetylcysteine in the prevention of DNA damage and cancer, with special reference to smoking-related end-points. Carcinogenesis 2001; 22: 999–1013.
- 45 Van Zandwijk N. N-acetylcysteine for lung cancer prevention. Chest 1995; 107: 1437–41.
- 46 Dai J, Weinberg RS, Waxman S, Jing Y. Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood 1999; 93: 268–77.
- 47 Simizu S, Takada M, Umezawa K, Imoto M. Requirement of caspase-3(-like) protease mediated hydrogen peroxide production for apoptosis induced by various anticancer agents. J Biol Chem 1998; 273: 26900–7.
- 48
De flora S,
D'Agostini F,
Massello L,
Giunciuglio D.
Synergism between N-acetylcysteine and doxorubicin in the prevention of tumorigenicity and metastasis in murine models.
Int J Cancer
1996;
67:
842–8.
10.1002/(SICI)1097-0215(19960917)67:6<842::AID-IJC14>3.0.CO;2-3 CAS PubMed Web of Science® Google Scholar
- 49 Albini A, D'Agostini F, Giunciuglio D, Paglieri I, Balansky R, De flora S. Inhibition of invasion, gelatinase activity, tumor take and metastasis of malignant cells by N-acetylcysteine. Int J Cancer 1995; 61: 121–9.
- 50 Rudin CM, Yang Z, Schumaker LM, VanderWeele DJ, Newkirk K, Egorin MJ, Zuhowski EG, Cullen KJ. Inhibition of glutathione synthesis reverses Bcl-2-mediated cisplatin resistance. Cancer Res 2003; 63: 312–8.
- 51 Shellard SA, Hosking LK, Hill BT. Anomalous relationship between cisplatin sensitivity and the formation and removal of platinum-DNA adducts in two human ovarian carcinoma cell lines in vitro. Cancer Res 1991; 51: 4557–64.
- 52 Iwao-Koizumi K, Matoba R, Ueno N, Kim SJ, Ando A, Miyoshi Y, Miyoshi Y, Maeda E, Noguchi S, Kato K. Prediction of docetaxel response in human breast cancer by gene expression profiling. J Clin Oncol 2005; 23: 422–31.