The effect of triangular shutter type flow deflector perforated baffle plate on the thermofluid performance of a heat exchanger
Corresponding Author
Md. Atiqur Rahman
Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
Correspondence Md. Atiqur Rahman, Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Md. Atiqur Rahman
Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
Correspondence Md. Atiqur Rahman, Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
Email: [email protected]
Search for more papers by this authorAbstract
The study aimed to investigate the heat transfer (HT) properties of a tubular heat exchanger (HX) by using innovative baffle plate arrangements. The newly designed baffle plate was circular with triangular openings and adjustable triangular flow deflectors. These deflectors were strategically placed at the inlet of the HX to create a swirling flow downstream. Three baffle plates were installed along the flow direction with different length-to-diameter ratios (pitch ratios) to assess their impact on HT, pressure drop, and thermal enhancement factor. The study compared these results with a smooth channel under varying Reynolds numbers (16,500–29,500). The findings revealed that both the pitch ratio (0.6–1.2) and the inclination angle of the deflectors (30⁰–50⁰) significantly affected the HX's performance. Notably, the baffle plate with a deflector inclination angle of 30° and a pitch ratio of 1 showed a remarkable average improvement of 36.5% compared to other angles and ratios.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1Bhuiya MMK, Chowdhury MSU, Saha M, Islam MT. Heat transfer and friction factor characteristics in turbulent flow through a tube fitted with perforated twisted tape inserts. Int Commun Heat Mass Transfer. 2013; 46: 49-57.
- 2Eiamsa-ard S, Thianpong C, Eiamsa-ard P. Turbulent heat transfer enhancement by counter/co-swirling flow in a tube fitted with twin twisted tapes. Exp Thermal Fluid Sci. 2010; 34(1): 53-62. doi:10.1016/j.expthermflusci.2009.09.002
- 3Skullong S, Promvonge P, Thianpong C, Jayranaiwachira N. Thermal behaviors in a round tube equipped with quadruple perforated delta- winglet pairs. Appl Therm Eng. 2017; 115: 229-243.
- 4Chingtuaythong W, Promvonge P, Thianpong C, Pimsarn M. Heat transfer characterization in a tubular heat exchanger with V-shaped rings. Appl Therm Eng. 2017; 110: 1164-1171.
- 5Eiamsa Ard S, Kongkaitpaiboon V, Nanan K. Thermohydraulics of turbulent flow through heat exchanger tubes fitted with circular-rings and twisted tapes. Chin J Chem Eng. 2013; 21(6): 585-593.
- 6Banihashemi SH, Assari MR, Javadi SM, Vahidifar S. Experimental and numerical study of thermal-hydraulic performance in a heat exchanger tube with circular ring's angular cutting inserts. Exp Heat Transfer. 2023; 36(4): 509-527.
- 7Promvonge P, Tamna S, Pimsarn M, Thianpong C. Thermal characterization in a circular tube fitted with inclined horseshoe baffles. Appl Therm Eng. 2015; 75: 1147-1155.
- 8Bhuiya MMK, Ahamed JU, Chowdhury MSU, et al. Heat transfer enhancement and development of correlation for turbulent flow through a tube with triple helical tape inserts. Int Commun Heat Mass Transfer. 2012; 39(1): 94-101.
- 9Gunes S, Ozceyhan V, Buyukalaca O. Heat transfer enhancement in a tube with equilateral triangle cross sectioned coiled wire inserts. Exp Thermal Fluid Sci. 2010; 34(6): 684-691.
- 10Gupta AK, Lilley DG, Syred N. Swirl Flows. Abacus Press; 1984.
- 11Palsson H, Beaubert F, Lalot S. Inducing swirling flow in heat exchanger pipes for reduced fouling rate. Heat Transfer Eng. 2013; 34(8-9): 761-768. doi:10.1080/01457632.2012.741503
- 12Wu M, Song H, Liang X, Huang N, Li X. Generation of micro-nano bubbles by self-developed swirl-type micro-nano bubble generator. Chem Eng Process Process Intensif. 2022; 181:109136. doi:10.1016/j.cep.2022.109136
- 13Gao Z, Wang J, Liu Z, Wei Y, Wang J, Mao Y. Effects of different inlet structures on the flow field of cyclone separators. Powder Technol. 2020; 372: 519-531. doi:10.1016/j.powtec.2020.06.014
- 14Pang X, Wang C, Yang W, et al. Numerical simulation of a cyclone separator to recycle the active components of waste lithium batteries. Eng Appl Comput Fluid Mech. 2022; 16(1): 937-951. doi:10.1080/19942060.2022.2053343
- 15De Fockert A, Verhaart FIH, Ferdos F. Experimentally determined effect of swirl on the performance of a rotodynamic pump. J Hydraul Res. 2022; 60(3): 434-444. doi:10.1080/00221686.2021.2001595
- 16Azhari AA, Milyani AH, Abu-Hamdeh NH, Hussin AM. Thermal improvement of heat exchanger with involve of swirl flow device utilizing nanomaterial. Case Stud Thermal Eng. 2023; 44:102793. doi:10.1016/j.csite.2023.102793
- 17Rahman MA, Dhiman SK. Investigations of the turbulent thermo-fluid performance in a circular heat exchanger with a novel flow deflector-type baffle plate. Bull Polish Acad Sci Tech Sci. 2023; 71(4):e145939. doi:10.24425/bpasts.2023.145939
- 18Rahman MA, Dhiman SK. Performance evaluation of turbulent circular heat exchanger with a novel flow deflector-type baffle plate. J Eng Res. 2023:100105. doi:10.1016/j.jer.2023.100105
10.1016/j.jer.2023.100105 Google Scholar
- 19Rahman MA. Effectiveness of a tubular heat exchanger and a novel perforated rectangular flow-deflector type baffle plate with opposing orientation. World J Eng. 2023. doi:10.1108/WJE-06-2023-0233
- 20Rahman A. Experimental investigations on single-phase heat transfer enhancement in an Air-To-Water heat exchanger with rectangular perforated flow deflector baffle plate. Int J Thermodyn. 2023: 1-9. doi:10.5541/ijot.1285385
- 21Rahman MA. The influence of geometrical and operational parameters on thermofluid performance of discontinuous colonial self-swirl-inducing baffle plate in a tubular heat exchanger. Heat Transfer. 2023: 1-18. doi:10.1002/htj.22956
- 22Promvonge P, Promthaisong P, Skullong S. Thermal performance augmentation in round tube with louvered V-winglet vortex generator. Int J Heat Mass Transfer. 2022; 182:121913. doi:10.1016/j.ijheatmasstransfer.2021.121913
- 23Akçay S. Numerical analysis of hydraulic and thermal performance of Al2O3–water nanofluid in a zigzag channel with central winglets. Gazi Univ J Sci. 2023; 36: 383-397. doi:10.35378/gujs.1012201
- 24Promvonge P, Skullong S. Enhanced thermal performance in tubular heat exchanger contained with V-shaped baffles. Appl Therm Eng. 2021; 185:116307. doi:10.1016/j.applthermaleng.2020.116307
- 25Nakhchi ME, Esfahani JA. CFD approach for two-phase CuO nanofluid flow through heat exchangers enhanced by double perforated louvered strip insert. Powder Technol. 2020; 367: 877-888. doi:10.1016/j.powtec.2020.04.043
- 26Sahel D, Ameur H, Benzeguir R, Kamla Y. Enhancement of heat transfer in a rectangular channel with perforated baffles. Appl Therm Eng. 2016; 101: 156-164. doi:10.1016/j.applthermaleng.2016.02.136
- 27Mellal M, Benzeguir R, Sahel D, Ameur H. Hydrothermal shell-side performance evaluation of a shell and tube heat exchanger under different baffle arrangement and orientation. Int J Therm Sci. 2017; 121: 138-149. doi:10.1016/j.ijthermalsci.2017.07.011
- 28Boukhadia K, Ameur H, Sahel D, Bozit M. Effect of the perforation design on the fluid flow and heat transfer characteristics of a plate-fin heat exchanger. Int J Therm Sci. 2018; 126: 172-180. doi:10.1016/j.ijthermalsci.2017.12.025
- 29Karima A, Djamel S, Ali N, Houari M. CFD investigations of thermal and dynamic behaviors in a tubular heat exchanger with butterfly baffles. Front Heat Mass Transfer. 2018; 10: 10-27. doi:10.5098/hmt.10.27
- 30Ameur H, Sahel D, Menni Y. Enhancement of the cooling of shear-thinning fluids in channel heat exchangers by using the V-baffling technique. Thermal Sci Eng Progress. 2020; 18:100534. doi:10.1016/j.tsep.2020.100534
10.1016/j.tsep.2020.100534 Google Scholar
- 31Djamel S, Ameur H, Touhami B. Effect of the size of graded baffles on the performance of channel heat exchangers. Thermal Sci. 2020; 24(2 Part A): 767-775. doi:10.2298/TSCI180326295S
- 32Sahel D. Thermal performance assessment of a tubular heat exchanger fitted with flower baffles. J Thermophys Heat Transfer. 2021; 35(4): 726-734. doi:10.2514/1.T6208
- 33Abdoune Y, Djamel S, Redouane B, Karima A. Convective heat transfer and fluid flow characteristics in fin and oval-tube heat exchanger. J Mech Eng Sci. 2021; 15(2): 7936-7947. doi:10.15282/jmes.15.2.2021.01.0626
- 34Sahel D, Ameur H, Alem K. Enhancement of the hydrothermal characteristics of Fin-and-Tube heat exchangers by vortex generators. J Thermophys Heat Transfer. 2021; 35(1): 152-163. doi:10.2514/1.T6023
- 35Houari A, Djamel S, Younes M. Numerical investigation of the performance of perforated baffles in a plate-fin heat exchanger. Thermal Sci. 2021; 25(5, Part B): 3629-3641. doi:10.2298/TSCI190316090A
- 36Sahel D, Ameur H, Mellal M. Effect of tube shape on the performance of a fin and tube heat exchanger. J Mech Eng Sci. 2020; 14(2): 6709-6718. doi:10.15282/jmes.14.2.2020.13.0525
- 37Djamel S, Benzeguir R, Baki T. Heat transfer enhancement in a fin and tube heat exchanger with isosceles vortex generators. MECHNIKA. 2015; 21(6):457-464. doi:10.5755/j01.mech.21.6.12240
- 38Hassan MA, Al-Tohamy AH, Kaood A. Hydrothermal characteristics of turbulent flow in a tube with solid and perforated conical rings. Int Commun Heat Mass Transfer. 2022; 134:106000. doi:10.1016/j.icheatmasstransfer.2022.106000
- 39Cao YZ. Experimental Heat Transfer. 1st ed. National Defence Industry Press; 1998: 120-125.
- 40Ma J, Huang YP, Huang J, Wang YL, Wang QW. Experimental investigations on single-phase heat transfer enhancement with longitudinal vortices in narrow rectangular channel. Nucl Eng Des. 2010; 240(1): 92-102. doi:10.1016/j.nucengdes.2009.10.015
- 41Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng. 1976; 16(2): 359-368.
- 42Dittus FW, Boelter LMK. University of California at Berkley. Publication on Engineering. 1930; 2: 443-461.
- 43Blasius H. Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten, Forschungsheft des Vereins Deutscher Ingenieure: Berlin, Germany. 1913: 1312
- 44Coleman HW, Steele WG. Experimentation, Validation, and Uncertainty Analysis for Engineers. John Wiley & Sons; 2018.
10.1002/9781119417989 Google Scholar
- 45Zhao H, Wang F, Wang C, et al. Study on the characteristics of horn-like vortices in an axial flow pump impeller under off-design conditions. Eng Appl Comput Fluid Mech. 2021; 15(1): 1613-1628. doi:10.1080/19942060.2021.1985615