Labeling and Protecting N-Terminal Protein Positions by β-Peptidyl Aminopeptidase-Catalyzed Attachment of β-Amino-Acid Residues – Insulin as a First Example
Beata Kolesinska
Institute of Organic Chemistry, Technical University of Łodz, Zeromskiego 116, PL-90-924 Łodz, Poland
This research work was partially supported by TUL Grants I-18/501/6245/pl1 and I-18/501/6255/pl1.Search for more papers by this authorJoanna Wasko
Institute of Organic Chemistry, Technical University of Łodz, Zeromskiego 116, PL-90-924 Łodz, Poland
Parts of the projected PhD thesis of J. W. are described herein.Search for more papers by this authorZbigniew Kaminski
Institute of Organic Chemistry, Technical University of Łodz, Zeromskiego 116, PL-90-924 Łodz, Poland
This research work was partially supported by TUL Grants I-18/501/6245/pl1 and I-18/501/6255/pl1.Search for more papers by this authorBirgit Geueke
Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
Search for more papers by this authorHans-Peter E. Kohler
Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
Search for more papers by this authorDieter Seebach
Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
Search for more papers by this authorBeata Kolesinska
Institute of Organic Chemistry, Technical University of Łodz, Zeromskiego 116, PL-90-924 Łodz, Poland
This research work was partially supported by TUL Grants I-18/501/6245/pl1 and I-18/501/6255/pl1.Search for more papers by this authorJoanna Wasko
Institute of Organic Chemistry, Technical University of Łodz, Zeromskiego 116, PL-90-924 Łodz, Poland
Parts of the projected PhD thesis of J. W. are described herein.Search for more papers by this authorZbigniew Kaminski
Institute of Organic Chemistry, Technical University of Łodz, Zeromskiego 116, PL-90-924 Łodz, Poland
This research work was partially supported by TUL Grants I-18/501/6245/pl1 and I-18/501/6255/pl1.Search for more papers by this authorBirgit Geueke
Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
Search for more papers by this authorHans-Peter E. Kohler
Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
Search for more papers by this authorDieter Seebach
Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
Search for more papers by this authorAbstract
We have shown for the first time that a natural protein (human insulin) can be acylated at the N-terminus with a β-amino acid (H-β3hAla-), in a process catalyzed by the β-peptidyl aminopeptidase 3-2W4-BapA. This selective modification, which could also be applied for protein labeling and tagging, should be generally useful, also to protect peptides and proteins from attack by common aminopeptidases.
References
- 1C. T. Walsh, ‘ Posttranslational Modification of Proteins: Expanding Nature's Inventory’, Roberts and Co. Publishers, Englewood, CO, 2006.
- 2P. G. Arnison, M. J. Bibb, G. Bierbaum, A. A. Bowers, T. S. Bugni, G. Bulaj, J. A. Camarero, D. J. Campopiano, G. L. Challis, J. Clardy, P. D. Cotter, D. J. Craik, M. Dawson, E. Dittmann, S. Donadio, P. C. Dorrestein, K.-D. Entian, M. A. Fischbach, J. S. Garavelli, U. Göransson, C. W. Gruber, D. H. Haft, T. K. Hemscheidt, C. Hertweck, C. Hill, A. R. Horswill, M. Jaspars, W. L. Kelly, J. P. Klinman, O. P. Kuipers, A. J. Link, W. Liu, M. A. Marahiel, D. A. Mitchell, G. N. Moll, B. S. Moore, R. Müller, S. K. Nair, I. F. Nes, G. E. Norris, B. M. Olivera, H. Onaka, M. L. Patchett, J. Piel, M. J. T. Reaney, S. Rebuffat, R. P. Ross, H.-G. Sahl, E. W. Schmidt, M. E. Selsted, K. Severinov, B. Shen, K. Sivonen, L. Smith, T. Stein, R. D. Süssmuth, J. R. Tagg, G.-L. Tang, A. W. Truman, J. C. Vederas, C. T. Walsh, J. D. Walton, S. C. Wenzel, J. M. Willey, W. A. van der Donk, ‘Ribosomally Synthesized and Post-Translationally Modified Peptide Natural Products: Overview and Recommendations for a Universal Nomenclature’, Nat. Prod. Rep. 2013, 30, 108 – 160.
- 3M. F. Freeman, M. J. Helf, A. Bhushan, B. I. Morinaka, J. Piel, ‘Seven Enzymes Create Extraordinary Molecular Complexity in an Uncultivated Bacterium’, Nat. Chem. 2017, 9, 387 – 395.
- 4B. G. Davis, ‘Synthesis of Glycoproteins’, Chem. Rev. 2002, 102, 579 – 601.
- 5T. Harschneck, S. F. Kirsch, ‘Unglaublich Chemoselektiv: Modifikation Nativer Proteine’, Nachr. Chem. 2010, 58, 764 – 768.
- 6H. C. Kolb, M. G. Finn, K. B. Sharpless, ‘Click Chemistry: Diverse Chemical Function from a Few Good Reactions’, Angew. Chem. Int. Ed. 2001, 40, 2004 – 2021.
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 7C. C. Liu, P. G. Schultz, ‘Adding New Chemistries to the Genetic Code’, Annu. Rev. Biochem. 2010, 79, 413 – 444.
- 8E. M. Sletten, C. R. Bertozzi, ‘From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions’, Acc. Chem. Res. 2011, 44, 666 – 676.
- 9D. M. Patterson, J. A. Prescher, ‘Orthogonal Bioorthogonal Chemistries’, Curr. Opin. Chem. Biol. 2015, 28, 141 – 149.
- 10J. V. Schreiber, J. Frackenpohl, F. Moser, T. Fleischmann, H.-P. E. Kohler, D. Seebach, ‘On the Biodegradation of β-Peptides’, ChemBioChem 2002, 3, 424 – 434.
10.1002/1439-7633(20020503)3:5<424::AID-CBIC424>3.0.CO;2-0 CAS PubMed Web of Science® Google Scholar
- 11B. Geueke, H.-J. Busse, T. Fleischmann, P. Kämpfer, H.-P. E. Kohler, ‘Description of Sphingosinicella xenopeptidilytica sp. nov., a β-Peptide-Degrading Species, and Emended Descriptions of the Genus Sphingosinicella and the Species Sphingosinicella microcystinivorans’, Int. J. Syst. Evol. Microbiol. 2007, 57, 107 – 113.
- 12B. Geueke, K. Namoto, D. Seebach, H.-P. E. Kohler, ‘A Novel β-Peptidyl Aminopeptidase (BapA) from Strain 3-2W4 Cleaves Peptide Bonds of Synthetic β-Tri- and β-Dipeptides’, J. Bacteriol. 2005, 187, 5910 – 5917.
- 13B. Geueke, T. Heck, M. Limbach, V. Nesatyy, D. Seebach, H.-P. E. Kohler, ‘Bacterial β-Peptidyl Aminopeptidases with Unique Substrate Specificities for β-Oligopeptides and Mixed β,α-Oligopeptides’, FEBS J. 2006, 273, 5261 – 5272.
- 14T. Heck, B. Geueke, H.-P. E. Kohler, ‘Bacterial β-Aminopeptidases: Structural Insights and Applications for Biocatalysis’, Chem. Biodiversity 2012, 9, 2388 – 2409, and references cited therein.
- 15T. Heck, M. Limbach, B. Geueke, M. Zachariasc, J. Gardiner, H.-P. E. Kohler, D. Seebach, ‘Enzymatic Degradation of β- and Mixed α,β-Oligopeptides’, Chem. Biodiversity 2006, 3, 1325 – 1348.
- 16T. Heck, H.-P. E. Kohler, M. Limbach, O. Flögel, D. Seebach, B. Geueke, ‘Enzyme-Catalyzed Formation of β-Peptides: β-Peptidyl Aminopeptidases BapA and DmpA Acting as β-Peptide-Synthesizing Enzymes’, Chem. Biodiversity 2007, 4, 2016 – 2030.
- 17J. Heyland, N. Antweiler, J. Lutz, T. Heck, B. Geueke, H.-P. E. Kohler, L. M. Blank, A. Schmid, ‘Simple Enzymatic Procedure for l-Carnosine Synthesis: Whole-Cell Biocatalysis and Efficient Biocatalyst Recycling’, Microb. Biotechnol. 2010, 3, 74 – 83.
- 18T. Heck, V. S. Makam, J. Lutz, L. M. Blank, A. Schmid, D. Seebach, H.-P. E. Kohler, B. Geueke, ‘Kinetic Analysis of l-Carnosine Formation by β-Aminopeptidases’, Adv. Synth. Catal. 2010, 352, 407 – 415.
- 19T. Heck, D. Seebach, S. Osswald, M. K. J. ter Wiel, H.-P. E. Kohler, B. Geueke, ‘Kinetic Resolution of Aliphatic β-Amino Acid Amides by β-Aminopeptidases’, ChemBioChem 2009, 10, 1558 – 1561.
- 20D. Seebach, A. Lukaszuk, K. Patora-Komisarska, D. Podwysocka, J. Gardiner, M.-O. Ebert, J. C. Reubi, R. Cescato, B. Waser, P. Gmeiner, H. Hübner, C. Rougeot, ‘On the Terminal Homologation of Physiologically Active Peptides as a Means of Increasing Stability in Human Serum – Neurotensin, Opiorphin, B27-KK10 Epitope, NPY’, Chem. Biodiversity 2011, 8, 711 – 739.
- 21J. Brange, A. Vølund, ‘Insulin Analogs with Improved Pharmacokinetic Profiles’, Adv. Drug. Delivery Rev. 1999, 35, 307 – 335.
- 22N. Sadrzadeh, M. J. Glembourtt, C. L. Stevenson, ‘Peptide Drug Delivery Strategies for the Treatment of Diabetes’, J. Pharm. Sci. 2007, 96, 1925 – 1954.
- 23N. Yin, M. A. Brimble, P. W. R. Harris, J. Wen, ‘Enhancing the Oral Bioavailability of Peptide Drugs by Using Chemical Modification and Other Approaches’, Med. Chem. 2014, 4, 763 – 769.
- 24S. T. Buckley, F. Hubálek, U. Lytt Rahbeck, ‘Chemically Modified Peptides and Proteins – Critical Considerations for Oral Delivery’, Tissue Barriers 2016, 4, e1156805 (11 pages).
- 25A. Al-Achi, D. Kota, ‘Does Epigallocatechin-3-Gallate-Insulin Complex Protect Human Insulin from Proteolytic Enzyme Action?’, Clin. Pharmacol. Biopharm. 2015, 4, 139.
- 26A. Mahajan, A. Singh Rawat, N. Bhatt, M. K. Chauhan, ‘Structural Modification of Proteins and Peptides’, Ind. J. Pharm. Edu. Res. 2014, 48, 34 – 47.
- 27A. Mero, M. Campisi, ‘Hyaluronic Acid Bioconjugates for the Delivery of Bioactive Molecules’, Polymers 2014, 6, 346 – 369.
- 28H. K. Elçioğlu, A. D. Sezer, ‘ Nanoparticle Insulin Drug Delivery – Applications and New Aspects’, Chapter 7, in ‘ Application of Nanotechnology in Drug Delivery’, Ed. A. D. Sezer, InTech, 2014.
- 29D. Kaklotar, P. Agrawal, A. Abdulla, R. P. Singh, Sonali, A. K. Mehata, S. Singh, B. Mishra, B. L. Pandey, A. Trigunayat, M. S. Muthu, ‘Transition from Passive to Active Targeting of Oral Insulin Nanomedicines: Enhancement in Bioavailability and Glycemic Control in Diabetes’, Nanomed. 2016, 11, 1465 – 1486.
- 30K. Liang, H. Wu, Y. Li, ‘Immune-Enrichment of Insulin in Bio-Fluids on Gold-Nanoparticle Decorated Target Plate and In Situ Detection by MALDI MS’, Clin. Proteom. 2017, 14, 5.
- 31K. Rose, H. De Purt, R. E. Offord, ‘Rapid Preparation of Human Insulin and Insulin Analogues in High Yield by Enzyme-Assisted Semi-Synthesis’, Biochem. J. 1983, 211, 671 – 676.
- 32S.-Z. Yang, Y.-D. Huang, X.-F. Jie, Y.-M. Feng, J.-Y. Niu, ‘Relationship Between Insulin A Chain Regions and Insulin Biological Activities’, World J. Gastroenterol. 2000, 6, 371 – 373.
- 33A. Rolla, ‘Pharmacokinetic and Pharmacodynamic Advantages of Insulin Analogues and Premixed Insulin Analogues over Human Insulins: Impact on Efficacy and Safety’, Am. J. Med. 2008, 121, S9 – S19.
- 34K. El Hage, V. Pandyarajan, N. B. Phillips, B. J. Smith, J. G. Menting, J. Whittaker, M. C. Lawrence, M. Meuwly, M. A. Weiss, ‘Extending Halogen-based Medicinal Chemistry to Proteins: IODO-INSULIN AS A CASE STUDY’, J. Biol. Chem. 2016, 291, 27023 – 27041.
- 35J. Brange, L. Langkjœr, ‘ Insulin Structure and Stability’, Chapter 11, in ‘ Stability and Characterization of Protein und Peptide Drugs – Case Histories’, Eds. Y. J. Wang, R. Pearlman, Springer, New York, 1993, p. 315.
- 36J. Brange, ‘The New Era of Biotech Insulin Analogues’, Diabetologia 1997, 40, S48 – S53.
- 37Y. Lu, H. Zhang, J. Fang, H. Wang, K. You, Y. Yang, S. Liu, X. Wang, Y. Meng, R. Cao, H. Fan, T. Li, J. Liu, ‘Study on Preparation and Unique Properties of a Novel Insulin Analogue with N-Terminal Arg-4, Pro-3, Lys-2, Pro-1extension at Insulin B-Chain’, Regul. Pept. 2009, 157, 92 – 98.
- 38M. R. Nilsson, C. M. Dobson, ‘Chemical Modification of Insulin in Amyloid Fibrils’, Protein Sci. 2003, 12, 2637 – 2641.
- 39J. Brange, L. Langkjœr, S. Havelund, A. Vølund, ‘Chemical Stability of Insulin. 1. Hydrolytic Degradation During Storage of Pharmaceutical Preparations’, Pharm. Res. 1992, 9, 715 – 726.
- 40R. Torosantucci, O. Mozziconacci, V. Sharov, C. Schöneich, W. Jiskoot, ‘Chemical Modifications in Aggregates of Recombinant Human Insulin Induced by Metal-Catalyzed Oxidation: Covalent Cross-Linking via Michael Addition to Tyrosine Oxidation Products’, Pharm. Res. 2012, 29, 2276 – 2293.
- 41Y. Liu, P.-X. Xu, J.-B. Hou, L.-F. Yang, J.-A. Chen, Y.-F. Zhao, ‘Chemical Modification of Insulin by N-Phosphorylation’, Int. J. Pept. Res. Ther. 2005, 11, 167 – 175.
10.1007/s10989-005-4711-1 Google Scholar
- 42M. Baudyš, T. Uchio, D. Mix, D. Wilson, S. W. Kim, ‘Physical Stabilzation of Insulin by Glycosylation’, J. Pharm. Sci. 1995, 84, 28 – 33.
- 43T. Uchio, M. Baudyš, F. Liu, S. C. Song, S. W. Kim, ‘Site-Specific Insulin Conjugates with Enhanced Stability and Extended Action Profile’, Adv. Drug. Deliv. Res. 1999, 35, 289 – 306.
- 44M. Hashimoto, K. Takada, Y. Kiso, S. Muranishi, ‘Synthesis of Palmitoyl Derivatives of Insulin and Their Biological Activities’, Pharm. Res. 1989, 6, 171 – 176.
- 45M. Hashizume, T. Douen, M. Murakami, A. Yamamoto, K. Takada, S. Muranishi, ‘Improvement of Large Intestinal Absorption of Insulin by Chemical Modification with Palmitic Acid in Rats’, J. Pharm. Pharmacol. 1992, 44, 555 – 559.
- 46T. Huang, K. Huang, ‘Synthesis, Characterization and Biological Activity of Chemically Modified Insulin Derivative with Alpha Lipoic Acid’, Protein Pept. Lett. 2006, 13, 135 – 142.
- 47J. R. White Jr., ‘Insulin Analogs: What Are the Clinical Implications of Structural Differences?’, US Pharm. 2010, 35, 3 – 7.
- 48K. Hinds, J. J. Koh, L. Joss, F. Liu, M. Baudyš, S. W. Kim, ‘Synthesis and Characterization of Poly(ethylene glycol)−Insulin Conjugates’, Bioconj. Chem. 2000, 11, 195 – 201.
- 49D. H.-C. Chou, M. J. Webber, B. C. Tang, A. B. Lin, L. S. Thapa, D. Deng, J. V. Truong, A. B. Cortinas, R. Langer, D. G. Anderson, ‘Glucose-Responsive Insulin Activity by Covalent Modification with Aliphatic Phenylboronic Acid Conjugates’, Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 2401 – 2406.
- 50F. Fenaille, P. A. Guy, J.-C. Tabet, ‘Study of Protein Modification by 4-Hydroxy-2-nonenal and Other Short Chain Aldehydes Analyzed by Electrospray Ionization Tandem Mass Spectrometry’, J. Am. Soc. Mass Spectrom. 2003, 14, 215 – 226.
- 51T. Merz, T. Heck, B. Geueke, P. R. E. Mittl, C. Briand, D. Seebach, H.-P. E. Kohler, M. G. Grütter, ‘Autoproteolytic and Catalytic Mechanisms for the β-Aminopeptidase BapA – A Member of the Ntn Hydrolase Family’, Structure 2012, 20, 1850 – 1860.
- 52T. Heck, T. Merz, A. Reimer, D. Seebach, D. Rentsch, C. Briand, M. G. Grütter, H.-P. E. Kohler, B. Geueke, ‘Crystal Structures of BapA Complexes with β-Lactam-Derived Inhibitors Illustrate Substrate Specificity and Enantioselectivity of β-Aminopeptidases’, ChemBioChem 2012, 13, 2137 – 2145.
- 53B. Kolesinska, K. K. Rozniakowski, J. Fraczyk, I. Relich, A. M. Papini, Z. J. Kamiński, ‘The Effect of Counterion and Tertiary Amine on the Efficiency of N-Triazinylammonium Sulfonates in Solution and Solid-Phase Peptide Synthesis’, Eur. J. Org. Chem. 2015, 401 – 408.
- 54I. Annis, B. Hargittai, G. Barany, ‘Disulfide Bond Formation in Peptides’, Methods Enzymol. 1997, 289, 198 – 221.
- 55R. Eritja, J. P. Ziehler-Martin, P. A. Walker, T. D. Lee, K. Legesse, F. Albericio, B. E. Kaplan, ‘On the Use of s-t-Butylsulphenyl Group for Protection of Cysteine in Solid-Phase Peptide Synthesis Using Fmoc-Amino Acids’, Tetrahedron 1987, 43, 2675 – 2680.
- 56K. D. Roberts, J. N. Lambert, N. J. Ede, A. M. Bray, ‘Efficient Synthesis of Thioether-Based Cyclic Peptide Libraries’, Tetrahedron Lett. 1998, 39, 8357 – 8360.
- 57D. F. Veber, J. D. Milkowski, S. L. Varga, R. G. Denkewalter, R. Hirschmann, ‘Acetamidomethyl. A Novel Thiol Protecting Group for Cysteine’, J. Amer. Chem. Soc. 1972, 94, 5456 – 5461.
- 58P. Marbach, J. Rudinger, ‘Synthesis of [2-p-Fluorophenylalanine]oxytocin and Its Desamino Analogue Using the S-Acetamidomethyl Protecting Group’, Helv. Chim. Acta 1974, 57, 403 – 414.
- 59B. Kamber, A. Hartmann, K. Eisler, B. Riniker, H. Rink, P. Sieber, W. Rittel, ‘The Synthesis of Cystine Peptides by Iodine Oxidation of S-Trityl-cysteine and S-Acetamidomethyl-cysteine Peptides’, Helv. Chim. Acta 1980, 63, 899 – 914.
- 60H. Yajima, N. Fujii, S. Funakoshi, T. Watanabe, E. Murayama, A. Otaka, ‘New Strategy for the Chemical Synthesis of Proteins’, Tetrahedron 1988, 44, 805 – 819.
- 61A.-L. Bachmann, H. D. Mootz, ‘N-Terminal Chemical Protein Labeling Using the Naturally Split GOS-TerL Intein’, J. Pept. Sci. 2017, 23, 624 – 630.
- 62I. V. Thiel, G. Volkmann, S. Pietrokovski, H. D. Mootz, ‘An Atypical Naturally Split Intein Engineered for Highly Efficient Protein Labeling’, Angew. Chem. Int. Ed. 2014, 53, 1306 – 1310.