Effect of radiotherapy on the chemical composition of root dentin
Lívia Bueno Campi MSc
Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
Search for more papers by this authorFabiane Carneiro Lopes PhD
Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
Search for more papers by this authorLuís Eduardo Silva Soares PhD
Laboratory of Dentistry and Applied Materials (LDAM), Research and Development Institute (IP&D), Universidade do Vale do Paraíba, Univap, São José dos Campos, São Paulo, Brazil
Search for more papers by this authorAlexandra Mussolino de Queiroz PhD
Department Children's Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
Search for more papers by this authorHarley Francisco de Oliveira PhD
Medical Clinic Department, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
Search for more papers by this authorPaulo César Saquy PhD
Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
Search for more papers by this authorCorresponding Author
Manoel Damião de Sousa-Neto PhD
Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
Correspondence
Manoel D. Sousa Neto, Associate Professor, Department of Restorative Dentistry, School of Denistry of Ribeirão Preto, University of São Paulo, Rua Célia de Oliveira Meirelles 350, 14024-070, Ribeirão Preto, São Paulo, Brasil.
Email: [email protected]
Search for more papers by this authorLívia Bueno Campi MSc
Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
Search for more papers by this authorFabiane Carneiro Lopes PhD
Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
Search for more papers by this authorLuís Eduardo Silva Soares PhD
Laboratory of Dentistry and Applied Materials (LDAM), Research and Development Institute (IP&D), Universidade do Vale do Paraíba, Univap, São José dos Campos, São Paulo, Brazil
Search for more papers by this authorAlexandra Mussolino de Queiroz PhD
Department Children's Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
Search for more papers by this authorHarley Francisco de Oliveira PhD
Medical Clinic Department, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
Search for more papers by this authorPaulo César Saquy PhD
Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
Search for more papers by this authorCorresponding Author
Manoel Damião de Sousa-Neto PhD
Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
Correspondence
Manoel D. Sousa Neto, Associate Professor, Department of Restorative Dentistry, School of Denistry of Ribeirão Preto, University of São Paulo, Rua Célia de Oliveira Meirelles 350, 14024-070, Ribeirão Preto, São Paulo, Brasil.
Email: [email protected]
Search for more papers by this authorAbstract
Background
The radiotherapy can directly affect the bond strength of the adhesive materials, interfering in the prognosis of restorative treatments, which may be caused by chemical changes in dentin structure.
Methods
Twenty inferior homologues premolars were distributed in 2 groups (in vitro study) (n = 10): nonirradiated and irradiated. The specimens were submitted to the analysis of phosphate (ν1PO43−;ν2PO43−;ν4PO43−), carbonate (ν3CO32−), amide I, CH2, amide III, and amide I/III ratio by confocal Raman spectroscopy. Data were submitted to statistical analysis (T test, P < .05).
Results
In intracanal dentin, the irradiated group had lower ν4PO43− values (1.23 ± 0.06) compared to nonirradiated group (1.40 ± 0.18) (P < .05), with no difference for ν1PO43− and ν2PO43 peaks (P > .05). The irradiated (1.56 ± 0.06) had lower carbonate, amide III (1.05 ± 0.19), and amide I/III ratio values (0.19 ± 0.06) compared to nonirradiated group (1.42 ± 0.10, 1.28 ± 0.24, and 0.31 ± 0.10, respectively) (P < .05). For medium dentin irradiated group (1.30 ± 0.12) had lower phosphate values compared to nonirradiated group (1.48 ± 0.22) (P < .05). In cementum, there was no statistical difference between the groups.
Conclusion
The radiotherapy was able to cause changes in ν4PO43−, carbonate, and amide III peaks of root dentin.
CONFLICT OF INTEREST
None.
REFERENCES
- 1 Globocan. International Agency for Cancer Research. http://globocan.iarc.fr/Default.aspx. Accessed December 29, 2016.
- 2Lo SL, Yen YH, Lee PJ, Liu CHC, Pu CM. Factors influencing postoperative complications in reconstructive microsurgery for head and neck cancer. J Oral Maxillofac Surg. 2017; 75: 867-873.
- 3Ness-Jensen E, Gottlieb-Vedi E, Wahlin K, Lagergren J. All-cause and cancer-specific mortality in GORD in a population-based cohort study (the HUNT study). Gut. 2016; 67: 209-215.
- 4Lothaire P, de Azambuja E, Dequanter D, et al. Molecular markers of head and neck squamous cell carcinoma: promising signs in need of prospective evaluation. Head Neck. 2006; 28: 256-269.
- 5Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008; 58: 71-96. https://doi.org/10.3322/CA.2007.0010.
- 6Colombo J, Rahal P. Alterações Genéticas em Câncer de Cabeça e Pescoço. Rev Bras Cancerol. 2009; 55: 165-174.
- 7Lieshout HFJ, Bots CP. The effect of radiotherapy on dental hard tissue-a systematic review. Clin Oral Investig. 2014; 18: 17-24.
- 8Yap LF, Lai SL, Patmanathan SN, et al. OPEN HOPX functions as a tumour suppressor in head and neck cancer. Nat Publ Gr. 2016; 6: 1-11.
- 9Bessell A, Am G, Furness S, et al. Interventions for the treatment of oral and oropharyngeal cancers: surgical treatment (Review). Cochrane Database Syst Rev. 2011; 9: CD006205.
- 10 J Beumer, TA Curtis, MT Marunick, eds. Maxillofacial Rehabilitation: Prosthodontic and Surgical Considerations. St. Louis, MO: Ishiyaku EuroAmerica; 1996.
- 11Açil Y, Springer IN, Niehoff P, et al. Proof of direct radiogenic destruction of collagen in vitro. Strahlenther Onkol. 2007; 183: 374-379.
- 12Carolina A, Netto DM, Carlos S, Esteves B, Jorge J. Dental needs in Brazilian patients subjected to head and neck radiotherapy. Braz Dent J. 2009; 20: 74-77.
- 13Gonçalves LMN, Palma-Dibb RG, Paula-Silva FWG, et al. Radiation therapy alters microhardness and microstructure of enamel and dentin of permanent human teeth. J Dent. 2014; 42: 986-992.
- 14Gupta N, Pal M, Rawat S, et al. Radiation-induced dental caries, prevention and treatment – a systematic review. Natl J Maxillofac Surg. 2015; 6: 160.
- 15Martins CV, Leoni GB, Oliveira HF, et al. Influence of therapeutic cancer radiation on the bond strength of an epoxy- or an MTA-based sealer to root dentine. Int Endod J. 2016; 49: 1065-1072.
- 16Soares CJ, Castro CG, Neiva N a, et al. Effect of gamma irradiation on ultimate tensile strength of enamel and dentin. J Dent Res. 2010; 89: 159-164.
- 17Chaachouay H, Ohneseit P, Toulany M, Kehlbach R, Multhoff G, Rodemann HP. Autophagy contributes to resistance of tumor cells to ionizing radiation. Radiother Oncol. 2011; 99: 287-292.
- 18Soares CJ, Neiva NA, Soares PB, et al. Effects of chlorhexidine and fluoride on irradiated enamel and dentin. J Dent Res. 2011; 90: 659-664.
- 19 Inca. Instituto Nacional do Câncer. Controle do Câncer: uma proposta de integração ensino serviço. 1993. http://www2.inca.gov.br/wps/wcm/connect/sobreinca/site/oinstituto. Acessed December 29, 2016.
- 20Vieira B, Hans EW, Van Vliet-vroegindeweij C, Van De Kamer J, Van Harten W. Operations research for resource planning and -use in radiotherapy: a literature review. BMC Med Inform Decis. 2016; 16: 149. https://doi.org/10.1186/s12911-016-0390-4.
- 21Walter F, Freislederer P, Belka C, Heinz C, Söhn M, Roeder F. Evaluation of daily patient positioning for radiotherapy with a commercial 3D surface-imaging system (Catalyst™). Radiat Oncol. 2016; 11: 1-8.
- 22Pioch T, Golfels D, Staehle HJ. An experimental study of the stability of irradiated teeth in the region of the dentinoenamel junction. Endod Dent Traumatol. 1992; 8: 241-244.
- 23Poyton GH, Pharoah MJ. Oral Radiology. Toronto, Canada: BC Decker; 1989: 17-19.
- 24Khaw A. Radiation-induced oral mucositis and periodontitis - proposal for an inter-relationship. Oral Dis. 2014; 20: 631-632.
- 25Thiagarajan A, Iyer NG. Radiation-induced sarcomas of the head and neck. J Craniofac Surg. 2008; 19: 1287-1291.
- 26Jaguar GC, Lima EN, Kowalski LP, et al. Double blind randomized prospective trial of bethanechol in the prevention of radiation-induced salivary gland dysfunction in head and neck cancer patients. Radiother Oncol. 2015; 115: 253-256.
- 27Agarwal P, Shiva Kumar HR, Rai KK. Trismus in oral cancer patients undergoing surgery and radiotherapy. J Oral Biol Craniofacial Res. 2016; 6: S9-S13.
- 28Cotomacio C, Campos L, Simões A, Jaguar G, Crosato EM, Alves F. Influence of bethanechol on salivary parameters in irradiated patients. Med Oral Patol Oral Cir Bucal. 2017; 22: e76-e83.
- 29Roś-Mazurczyk M, Wojakowska A, Marczak Ł, et al. Ionizing radiation affects profile of serum metabolites: increased level of 3-hydroxybutyric acid in serum of cancer patients treated with radiotherapy. Acta Biochim Pol. 2017; 64: 189-193.
- 30Kielbassa AM, Beetz I, Schendera A, Hellwig E. Irradiation effects on microhardness of fluoridated and non-fluoridated bovine dentin. Eur J Oral Sci. 1997; 105: 444-447.
- 31Kielbassa AM, Wrbas KT, Schulte-Mönting J, Hellwig E. Correlation of transversal microradiography and microhardness on in situ-induced demineralization in irradiated and nonirradiated human dental enamel. Arch Oral Biol. 1999; 44: 243-251.
- 32Kielbassa AM, Munz I, Bruggmoser G, Schulte-Mönting J. Effect of demineralization and remineralization on microhardness of irradiated dentin. J Clin Dent. 2002; 13: 104-110.
- 33Mjör IA. Dentin permeability: the basis for understanding pulp reactions and adhesive technology. Braz Dent J. 2009; 20: 3-16.
- 34Grötz KA, Duschner H, Kutzner J, Thelen M, Wagner W. New evidence for the etiology of so-called radiation caries. Proof for directed radiogenic damage od the enamel-dentin junction. Strahlenther Onkol. 1997; 173: 668-676.
- 35Springer IN, Niehoff P, Warnke PH. Radiation caries—radiogenic destruction of dental collagen. Oral Oncol. 2005; 41: 723-728.
- 36Reed R, Xu C, Liu Y, et al. Radiotherapy effect on nano-mechanical properties and chemical composition of enamel and dentin. Arch Oral Biol. 2015; 60: 690-697.
- 37Chistiakov DA, Voronova NV, Chistiakov PA. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients. Acta Oncol. 2008; 47: 809-824.
- 38Naves LZ, Novais VR, Armstrong SR, Correr-Sobrinho L, Soares CJ. Effect of gamma radiation on bonding to human enamel and dentin. Support Care Cancer. 2012; 20: 2873-2878.
- 39Kataoka SH, Setzer FC, Fregnani ER, Pessoa OF, Gondim E Jr, Caldeira CL. Effects of 3-dimensional conformal or intensity-modulated radiotherapy on dental pulp sensitivity during and after the treatment of oral or oropharyngeal malignancies. J Endod. 2012; 38: 148-152.
- 40Kielbassa AM, Hellwig E, Meyer-Lueckel H. Effects of irradiation on in situ remineralization of human and bovine enamel demineralized in vitro. Caries Res. 2006; 40: 130-135.
- 41Silva ARS, Alves FA, Antunes A, Goes MF, Lopes MA. Patterns of demineralization and dentin reactions in radiation-related caries. Caries Res. 2009; 43: 43-49.
- 42Beech N, Robinson S, Porceddu S, Batstone M. Dental management of patients irradiated for head and neck cancer. Aust Dent J. 2014; 59: 20-28.
- 43Al-Nawas B, Grötz KA, Rose E, Duschner H, Kann P, Wagner W. Using ultrasound transmission velocity to analyse the mechanical properties of teeth after in vitro, in situ, and in vivo irradiation. Clin Oral Investig. 2000; 4: 168-172.
- 44Shenoy VK, Shenoy KK, Rodrigues S, Shetty P. Management of oral health in patients irradiated for head and neck cancer: a review. Kathmandu Univ Med J. 2007; 5: 117-120.
- 45Morais-Faria K, Neves-Silva R, Lopes MA, et al. The wolf in sheep's clothing: microtomographic aspects of clinically incipient radiation-related caries. Med Oral Patol Oral Cir Bucal. 2016; 21: e299-e304.
- 46Deng J, Jackson L, Epstein JB, Migliorati CA, Murphy BA. Dental demineralization and caries in patients with head and neck cancer. Oral Oncol. 2015; 51: 824-831.
- 47Frydrych AM, Slack-Smith LM, Parsons R. Compliance of post-radiation therapy head and neck cancer patients with caries preventive protocols. Aust Dent J. 2017; 62: 192-199.
- 48Castadot P, Lee JA, Geets X, Grégoire V. Adaptive radiotherapy of head and neck cancer. Semin Radiat Oncol. 2010; 20: 84-93.
- 49Tao Y, Daly-Schveitzer N, Lusinchi A, Bourhis J. Advances in radiotherapy of head and neck cancers. Curr Opin Oncol. 2010; 22: 194-199.
- 50de Siqueira Mellara T, Palma-Dibb R, de Oliveira H, et al. The effect of radiation therapy on the mechanical and morphological properties of the enamel and dentin of deciduous teeth—an in vitro study. Radiat Oncol. 2014; 9: 30.
- 51de Sá Ferreira EM, Soares LES, Antunes HS, et al. Effect of therapeutic doses of radiotherapy on the organic and inorganic contents of the deciduous enamel: an in vitro study. Clin Oral Investig. 2016; 20: 1953-1961.
- 52Penel G, Leroy G, Rey C, Bres E. MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int. 1998; 63: 475-481.
- 53Liu Y, Hsu CY. Laser-induced compositional changes on enamel: a FT-Raman study. J Dent. 2007; 35: 226-230.
- 54de Sant'Anna GR, dos Santos EA, Soares LE, et al. Dental enamel irradiated with infrared diode laser and photo-absorbing cream: part 2—EDX study. Photomed Laser Surg. 2009; 27: 771-782.
- 55Lopes FC, Roperto R, Akkus A, Akkus O, Souza-Gabriel AE, Sousa-Neto MD. Effects of different lasers on organic/inorganic ratio of radicular dentin. Lasers Med Sci. 2016; 31: 415-420.
- 56Joyston-Bechal S. The effect of X-radiation on the susceptibility of enamel to an artificial caries-like attack in vitro. J Dent. 1985; 13: 41-44.
- 57Santin GC, Palma-Dibb RG, Romano FL, De Oliveira HF, Nelson Filho P, De Queiroz AM. Physical and adhesive properties of dental enamel after radiotherapy and bonding of metal and ceramic brackets. Am J Orthod Dentofacial Orthop. 2015; 148: 283-292.
- 58Ferguson HW, Stevens MR. Advances in head and neck radiotherapy to the mandible. Oral Maxillofac Surg Clin North Am. 2007; 19: 553-563.
- 59Leung Y, Morris MD. Characterization of the chemical interactions betwen 4-MET and enamel by Raman spectroscopy. Dent Mater. 1995; 11: 191-195.
- 60Tsuda H, Arends J. Raman spectroscopy in dental research: a short review of recent studies. Adv Dent Res. 1997; 11: 539-547.
- 61Akkus A, Akkus A, Roperto R, et al. Evaluation of mineral content in healthy permanent human enamel by Raman spectroscopy. J Clin Exp Dent. 2016; 8: e546-e549.
- 62Silva Soares LE, do Espírito Santo AM, Brugnera A, Zanin FAA, Martin AA. Effects of Er:YAG laser irradiation and manipulation treatments on dentin components, part 2: energy-dispersive X-ray fluorescence spectrometry study. J Biomed Opt. 2009; 14: 24002.
- 63Pascon FM, Kantovitz KR, Soares LE, Do Espírito Santo AM, Martin AA, Puppin-Rontani RM. Morphological and chemical changes in dentin after using endodontic agents: Fourier transform Raman spectroscopy, energy-dispersive x-ray fluorescence spectrometry, and scanning electron microscopy study. J Biomed Opt. 2012; 17: 075008.
- 64Oliveira M, Mansur HS. Synthetic tooth enamel: SEM characterization of a fluoride hydroxyapatite coating for dentistry applications. Mater Res. 2007; 10: 115-118.
- 65Pashley DH. Dentin-predentin complex and its permeability: physiologic overview. J Dent Res. 1985; 64: 613-620.
- 66Mjör IA, Nordahl I. The density and branching of dentinal tubules in human teeth. Arch Oral Biol. 1996; 41: 401-412.
- 67Torabinejad M, Handysides R, Khademi AA, Bakland LK. Clinical implications of the smear layer in endodontics: a review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002; 94: 658-666.
- 68Craig RG, Gehring PE, Peyton FA. Relation of structure to the microhardness of human dentin. J Dent Res. 1959; 38: 624-630.
- 69Rautiola CA, Craig RG. The microhardness of cementum and underlying dentin of normal teeth and teeth exposed to periodontal disease. J Periodontol. 1961; 32: 113-123.
- 70Feagin F, Patel PR, Koulourides T, Pigman W. Study of the effect of calcium, phosphate, fluoride and hydrogen ion concentrations on the remineralization of partially demineralized human and bovine enamel surfaces. Arch Oral Biol. 1971; 16: 535-548.
- 71Otsuka M, Papangkorn K, Baig AA, Higuchi WI. Chemometric evaluation of physicochemical properties of carbonated-apatitic preparations by Fourier transform infrared spectroscopy. J Biomed Mater Res A. 2012; 100(8): 2186-2193.
- 72Tartari T, Bachmann L, Maliza AG, Andrade FB, Duarte MA, Bramante CM. Tissue dissolution and modifications in dentin composition by different sodium hypochlorite concentrations. J Appl Oral Sci. 2016; 24: 291-298.
- 73Cury JA. Uso do flúor e controle da cárie como doença. In: LN Baratieri, S Monteiro, MAC Andrada, LCC Vieira, AV Ritter, AC Cardoso, eds. Odontologia Restauradora: Fundamentos e Possibilidades. Brazil: Santos; 2001.
- 74Novais VR, Barbosa P, Soares F, et al. Effect of gamma radiation and endodontic treatment on mechanical properties of human and bovine root dentin. Braz Dent J. 2016; 27: 670-674.
- 75Lacerda C, Pleipis AMG, Goissis G. Hidrólise seletiva de carboxiamidas de resíduos de asparagina e glutamina em colágeno: preparação e caracterização de matrizes aniônicas para uso como biomateriais. Quím. 1998; 21: 267-271.
- 76Bet MR, Goissis G, Lacerda CA. Characterization of polyanionic collagen prepared by selective hydrolysis of asparagine and glutamine carboxyamide side chains. Biomacromolecules. 2001; 2: 1074-1079.
- 77Silvestein RM, Webster FX. Identificação Espectrométrica de Compostos Orgânicos. 6th ed. Rio de Janeiro, Brazil: Livros Técnicos e Científicos; 2007.
- 78Prestes RC, Golunski SM, Toniazzo G, Kempka AP, Di Luccio M. Caracterização da fibra de colágeno, gelatina e colágeno hidrolisado. Rev Bras Prod Agroindustriais. 2013; 15: 375-382.
10.15871/1517-8595/rbpa.v15n4p375-382 Google Scholar
- 79Knott L, Bailey AJ. Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone. 1998; 22: 181-187.
- 80Dziedzic-Goclawska A, Kaminski A, Uhrynowska-Tyszkiewicz I, Stachowicz W. Irradiation as a safety procedure in tissue banking. Cell Tissue Bank. 2005; 6: 201-219.
- 81Kochueva MV, Ignatieva NY, Zakharkina OL, et al. Collagen structural changes in early radiation-induced damage. Sov Teh v Med. 2012; 4: 24-28.
- 82Walker MP, Wichman B, Cheng AL, Coster J, Williams KB. Impact of radiotherapy dose on dentition breakdown in head and neck cancer patients. Pr Radiat Oncol. 2011; 1: 142-148.
- 83Xu C, Wang Y. Collagen cross-linking increases its biodegradation resistance in wet dentin bonding. J Adhes Dent. 2014; 14: 11-18.
- 84Oliveira PK, Tosato MG, Alves RS, Martin AA, Fávero PP, Raniero L. Análise da composição bioquímica da pele por espectroscopia Raman. Rev Bras Eng Biomed. 2012; 28: 278-287.
10.4322/rbeb.2012.032 Google Scholar
- 85Choi JH, Cho M. Calculations of intermode coupling constants and simulations of amide I, II, and III vibrational spectra of dipeptides. Chem Phys. 2009; 361: 168-175.
- 86Vanna R, Ronchi P, Lenferink AT, et al. Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy. Analyst. 2015; 140: 1054-1064.
- 87Sasaki KM, Aoki A, Ichinose S, Ishikawa I. Morphological analysis of cementum and root dentin after Er:YAG laser irradiation. Lasers Surg Med. 2002; 31: 79-85.
- 88Mjör IA, Selvig KA. O Periodonto. In: IA Mjör, OE Fejerskov, eds. Embriol e Histol Oral humana. Espanha: Salvat Editores; 1991: 123-168.