Management and control strategy of a hybrid energy source fuel cell/supercapacitor in electric vehicles
Daoud Rezzak
LAMEL Laboratory, Mohamed Seddik Ben Yahia University, Jijel, Algeria
Search for more papers by this authorCorresponding Author
Nasserdine Boudjerda
LAMEL Laboratory, Mohamed Seddik Ben Yahia University, Jijel, Algeria
Correspondence
Nasserdine Boudjerda, Department of Electrical Engineering, Faculty of Sciences and Technology, University of Jijel, PO Box 98 Ouled Aissa, Jijel 18000, Algeria.
Email: [email protected]
Search for more papers by this authorDaoud Rezzak
LAMEL Laboratory, Mohamed Seddik Ben Yahia University, Jijel, Algeria
Search for more papers by this authorCorresponding Author
Nasserdine Boudjerda
LAMEL Laboratory, Mohamed Seddik Ben Yahia University, Jijel, Algeria
Correspondence
Nasserdine Boudjerda, Department of Electrical Engineering, Faculty of Sciences and Technology, University of Jijel, PO Box 98 Ouled Aissa, Jijel 18000, Algeria.
Email: [email protected]
Search for more papers by this authorSummary
This paper deals with the modeling of electric vehicles using hybrid power source: fuel cell/supercapacitor. The fuel cell is connected to the direct current (DC) Bus via a boost converter and satisfies the load average power requirements. The supercapacitor is linked to the DC-Bus through a buck-boost converter and ensures the transient power requirements. A permanent-magnet synchronous motor is used as traction motor and connected to the DC-Bus through a 3-phase inverter. We propose an energy management technique, based on the urban driving cycle (ECE-15 driving cycle) and the extraurban driving cycle, with the use of conventional proportional-integral (PI) controllers. The main goals are as follows: first, to avoid fast operation of the fuel cell current so as to ensure optimal operation of the fuel cell system, and second, the supercapacitor allows a satisfactory dynamic of the DC-Bus so as to provide the required energy for the car transients so as to meet both urban and extraurban driving cycles. The performances of the proposed strategy are evaluated through some simulations dedicated to electric vehicle applications.
REFERENCES
- 1Taghizadeh M, Hoseintabar M, Faiz J. Frequency control of isolated WT/PV/SOFC/UC network with new control strategy for improving SOFC dynamic response. Int Trans Electr Energy Syst. 2015; 25: 1748–1770. doi: 10.1002/etep.1925
- 2G. Marsala, D. Bouquin, J. T. Pukrushpan, M. Pucci. A neural inverse control of a PEM-FC system by the Generalized Mapping Regressor (GMR). IEEE, Industry Applications Society Annual Meeting 2008; IAS'08: 1-12. DOI: 10.1109/08IAS.2008.154.
- 3Tani A, Camara MB, Dakyo B, Azzouz Y. DC/DC and DC/AC converters control for hybrid electric vehicles energy management—ultracapacitors and fuel cell. IEEE Trans Ind inf. 2013; 9: 686–696. doi: 10.1109/TII.2012.2225632
- 4Azib T, Bethoux O, Remy G, Marchand C. Saturation management of a controlled fuel-cell/ultracapacitor hybrid vehicle. IEEE Trans Veh Tecnol. 2011; 60: 4127–4138. doi: 10.1109/TVT.2011.2165092
- 5Thounthong P, Raël S, Davat B. Control strategy of fuel cell and supercapacitors association for a distributed generation system. IEEE Transactions on Industrial Electronics. 2007; 54: 3225–3233. doi: 10.1109/TIE.2007.896477
- 6Thounthong P, Raël S, Davat B. Analysis of supercapacitor as second source based on fuel cell power generation. IEEE Trans Energy Convers. 2009; 24: 247–255. doi: 10.1109/TEC.2008.2003216
- 7Azib T, Bethoux O, Remy G, Marchand C, Berthelot E. Innovative control strategy of a single converter for hybrid fuel cell/supercapacitors power source. IEEE Trans Ind Electron. 2010; 57: 4024–4031. doi: 10.1109/TIE.2010.2044123
- 8Kim M-J, Peng H. Power management and design optimization of fuel cell/battery hybrid vehicles. J Power Sources. 2007; 165: 819–832.
- 9García P, Torreglosa JP, Fernández LM, Jurado F. Operation mode control of a hybrid power system based on fuel cell/battery/ultracapacitor for an electric tramway. Comput Electr Eng. Elsevier2013; 39: 1993–2004. doi: 10.1016/j.compeleceng.2013.04.022
- 10Garcia P, Fernández LM, Torreglosa JP, Jurado F. Comparative study of four control systems for a 400-kW fuel cell battery—powered tramway with two DC/DC converters. Int Trans Electr Energy Syst. 2013; 23: 1028–1048. doi: 10.1002/etep.1636
- 11Hajizadeh A, Golkar MA, Norum L. Robust control of hybrid fuel cell/energy storage distributed power generation system in weak grid under balanced and unbalanced voltage sag. Eur T Electr Power. 2011; 21: 522–540. doi: 10.1002/etep.459
- 12Benyahia N, Denoun H, Zaouia M, Rekioua T, Benamrouche N. Power system simulation of fuel cell and supercapacitor based electric vehicle using an interleaving technique. Int J Hydrogen Energy. 2015; 40: 15806–15814. doi: 10.1016/j.ijhydene.2015.03.081
- 13Rajabzadeh M, Bathaee SMT, Golkar MA. Dynamic modeling and nonlinear control of fuel cell vehicles with different hybrid power sources. Int J Hydrogen Energy. 2016; 41: 3185–3198. doi: 10.1016/j.ijhydene.2015.12.046
- 14Motapon SN, Dessaint LA, Al-Haddad K. A comparative study of energy management schemes for a fuel-cell hybrid emergency power system of more-electric aircraft. IEEE Trans Ind Electron. 2014; 61: 1320–1334. doi: 10.1109/TIE.2013.2257152
- 15El Fadil H, Giri F, Guerrero JM, Abdelouahad T. Modeling and nonlinear control of fuel cell/supercapacitor hybrid energy storage system for electric vehicles. IEEE Trans Veh Technol. 2014; 63: 3011–3018. doi: 10.1109/TVT.2014.2323181
- 16Thounthong P, Raël S, Davat B. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications. J Power Sources. 2009; 193: 376–385. doi: 10.1016/j.jpowsour.2008.12.120
- 17Hu X, Cao D, Egardt B. Advanced power-source integration in hybrid electric vehicles: multicriteria optimization approach. IEEE Trans Ind Electron. 2015; 62: 7847–7858. doi: 10.1109/TIE.2015.2463770
- 18Hu X, Egardt B, Murgovski N. Optimal dimensioning and power management of a fuel cell/battery hybrid bus via convex programming. IEEE/ASME Trans Mechatron. 2015; 20: 457–468. doi: 10.1109/TMECH.2014.2336264
- 19Neffati A, Caux S, Fadel M. Fuzzy switching of fuzzy rules for energy management in HEV. IFAC-PPPSC Power Plant & Power System Control Symposium. 2012; 45: 663–668. doi: 10.3182/20120902-4-FR-2032.00116
10.3182/20120902-4-FR-2032.00116 Google Scholar
- 20Pukrushpan JT, Peng H, Stefanopoulou AG. Simulation and analysis of transient fuel cell system performance based on a dynamic reactant flow model. Int Mech Eng Congress Expo. 2002; 1–12. doi: 10.1115/IMECE2002-32051
10.1115/IMECE2002-32051 Google Scholar
- 21Pukrushpan JT, Peng H, Stefanopoulou AG. Control-oriented modeling and analysis for automotive fuel cell systems. J Dyn Syst Meas Control, Transactions of the ASM. 2004; 126: 14–25. doi: 10.1115/1.1648308
- 22Pukrushpan JT, Stefanopoulou AG, Peng H. Control of fuel cell breathing. IEEE Control Syst Mag. 2004; 24: 30–46. doi: 10.1109/MCS.2004.1275430
- 23Rezzak D, Khoucha F, Benbouzid MEH, Kheloui A, Mamoune A. A DC-DC converter-based PEM fuel cell system emulator. IEEE Int Conf Power Eng, Energy Elect Drives POWERENG. 2011; 1–6. doi: 10.1109/PowerEng.2011.6036469
10.1109/PowerEng.2011.6036469 Google Scholar
- 24Zubieta L, Bonert R. Characterization of double-layer capacitors for power electronics applications. IEEE Trans Ind Appl. 2000; 36: 199–205. doi: 10.1109/28.821816
- 25Belhachemi F, Rael S, Davat B. A physical based model of power electric double-layer supercapacitors. IEEE Ind Appl Conf. 2000; 5: 3069–3076. doi: 10.1109/IAS.2000.882604
10.1109/IAS.2000.882604 Google Scholar
- 26Rizoug N, Bartholomeüs P, Le Moigne P. Modeling and characterizing supercapacitors using an online method. IEEE Trans Ind Electron. 2010; 57: 3980–3990. doi: 10.1109/TIE.2010.2042418
- 27 SimPowerSystems™, Two-Quadrant Chopper DC Drive© 1984-2009 the MathWorks, Inc.
- 28 SimPower Systems™, Space Vector PWM VSI Induction Motor Drive© 1984-2009 the MathWorks, Inc.
- 29G. Bailly. Simulation Multi-domaines d'un Système de Propulsion Hybride Electrique sous l'Environnement Matlab/Simulink. PhD thesis; école de technologie supérieure université du québec 2006.
- 30Garcia XT, Zigmund B, Terlizzi A, Pavlanin R, Salvatore L. Comparison between FOC and DTC strategies for permanent magnet synchronous motors. Adv Electr Electron Eng. 2006; 5: 76–81. doi: 10.15598/aeee.v5i1-2.179
10.15598/aeee.v5i1-2.179 Google Scholar
- 31Stewart P, Kadirkamanathan V. Dynamic model reference PI control of permanent magnet AC motor drives. Control Eng Pract. 2001; 9: 1255–1263. doi: 10.1016/S0967-0661(01)00071-5
- 32A. Khlaief. Contribution à la Commande Vectorielle sans Capteur Mécanique des Machines Synchrones à Aimants Permanents (MSAP). PhD Thesis; Aix Marseille Université & ESSTT-Tunis 2012.
- 33Kunto WW, Seokkwon J. Genetic algorithm tuned PI controller on PMSM simplified vector control. J Cent South Univ. 2013; 20: 3042–3048. doi: 10.1007/s11771-013-1827-x
- 34Ducusin MT, Gargies S, Mi C. Modeling of a series hybrid electric high-mobility multipurpose wheeled vehicle. IEEE Trans Veh Technol. 2007; 56: 557–565. doi: 10.1109/VPPC.2005.1554590