Metal Mixture Toxicity of Ni, Cu, and Zn in Freshwater Algal Communities and the Correlation of Single-Species Sensitivities Among Single Metals: A Comparative Analysis
Corresponding Author
Andreas Fettweis
Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
Address correspondence to [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Software, Validation, Visualization, Writing - original draft
Search for more papers by this authorSimon Hansul
Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent, Belgium
Contribution: Conceptualization, Investigation, Methodology, Project administration, Validation, Writing - review & editing
Search for more papers by this authorKarel De Schamphelaere
Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent, Belgium
Contribution: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Writing - review & editing
Search for more papers by this authorErik Smolders
Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
Contribution: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Writing - review & editing
Search for more papers by this authorCorresponding Author
Andreas Fettweis
Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
Address correspondence to [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Software, Validation, Visualization, Writing - original draft
Search for more papers by this authorSimon Hansul
Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent, Belgium
Contribution: Conceptualization, Investigation, Methodology, Project administration, Validation, Writing - review & editing
Search for more papers by this authorKarel De Schamphelaere
Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent, Belgium
Contribution: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Writing - review & editing
Search for more papers by this authorErik Smolders
Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
Contribution: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Writing - review & editing
Search for more papers by this authorAbstract
The effects assessment of metals is mainly based on data of single metals on single species, thereby not accounting for effects of metal mixtures or effects of species interactions. Both of these effects were tested in combination, thereby hypothesizing that the sensitivity of a community to synergistic mixture toxicity depends on the correlation of single-species sensitivities among the single metals. Single-metal and metal-mixture effects were tested in full concentration–response experiments (fixed ray of 1:1:3 and 5:1:13 mass ratio Ni:Cu:Zn) on eight single freshwater algal species and 14 algal communities of four species each. The mean correlation of single-species median effect concentrations among the single metals (Ni–Cu, Cu–Zn, and Zn–Ni) for all species in a community () ranged from −0.4 to 0.9 among the communities; most of these (12/14) were positive. Functional endpoints (total biomass) were overall less sensitive than structural endpoints (Bray-Curtis similarity index) for communities with positively correlated single-species sensitivities among the single metals (), suggesting that such correlations indicate functional redundancy under metal-mixture stress. Antagonistic metal-mixture interactions were predominantly found in single species, whereas metal-mixture interactions were antagonistic and surprisingly synergistic for the communities, irrespective of the reference mixture model used (concentration addition or independent action). The mixture interactions close to the carrying capacity (day 7) of communities gradually shifted from antagonism to more noninteractions with increasing correlation of single-species sensitivities among the single metals. Overall, this suggests that functional redundancy under mixed-metal stress comes at the cost of reduced biodiversity and that synergisms can emerge at the community level without any synergisms on the single-species level. Environ Toxicol Chem 2023;42:2666–2683. © 2023 SETAC.
Conflict of Interest
The authors confirm that this is an independent study and declare that there are no conflicts of interest.
Open Research
This article has earned an Open Data badge for making publicly available the digitally shareable data necessary to reproduce the reported results. The data are available at https://doi.org/10.6084/m9.figshare.23941461. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.
Data Availability Statement
The Supporting Information and raw data are publicly available at https://doi.org/10.6084/m9.figshare.23941461, and if required, more information can be requested by contacting Andreas Fettweis ([email protected]).
Supporting Information
This article includes online-only Supporting Information.
Filename | Description |
---|---|
etc5735-sup-0001-Supplemental_Information.docx6.7 MB | Supplemental Information. |
etc5735-sup-0002-Raw_data.xlsx859.4 KB | Supplemental Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Agathokleous, E. (2021). The rise and fall of photosynthesis: Hormetic dose response in plants. Journal of Forestry Research, 32(2), 889–898. https://doi.org/10.1007/s11676-020-01252-1
- Andresen, E., Opitz, J., Thomas, G., Stärk, H. J., Dienemann, H., Jenemann, K., Dickinson, B. C., & Küpper, H. (2013). Effects of Cd & Ni toxicity to Ceratophyllum demersum under environmentally relevant conditions in soft & hard water including a German lake. Aquatic Toxicology, 142–143, 387–402. https://doi.org/10.1016/j.aquatox.2013.09.016
- Baert, J. M., De Laender, F., & Janssen, C. R. (2017). The consequences of nonrandomness in species-sensitivity in relation to functional traits for ecosystem-level effects of chemicals. Environmental Science & Technology, 51(12), 7228–7235. https://doi.org/10.1021/acs.est.7b00527
- Baert, J. M., De Laender, F., Sabbe, K., & Janssen, C. R. (2016). Biodiversity increases functional and compositional resistance, but decreases resilience in phytoplankton communities. Ecology, 97(12), 3433–3440. https://doi.org/10.1002/ecy.1601
- Bates, S. S., Tessier, A., Campbell, P. G. C., & Létourneau, M. (1985). Zinc–phosphorus interactions and variation in zinc accumulation during growth of Chlamydomonas variabilis (Chlorophyceae) in batch culture. Canadian Journal of Fisheries and Aquatic Sciences, 42(1), 86–94. https://doi.org/10.1139/f85-011
- Belz, R. G., Cedergreen, N., & Sørensen, H. (2008). Hormesis in mixtures—Can it be predicted? Science of the Total Environment, 404(1), 77–87. https://doi.org/10.1016/j.scitotenv.2008.06.008
- Brain, P., & Cousens, R. (1989). An equation to describe dose responses where there is stimulation of growth at low doses. Weed Research, 29(2), 93–96. https://doi.org/10.1111/j.1365-3180.1989.tb00845.x
- Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27(4), 325–349. https://doi.org/10.2307/1942268
- Calabrese, E. J. (2010). Hormesis is central to toxicology, pharmacology and risk assessment. Human & Experimental Toxicology, 29(4), 249–261. https://doi.org/10.1177/0960327109363973
- Calabrese, E. J., & Mattson, M. P. (2017). How does hormesis impact biology, toxicology, and medicine? NPJ Aging and Mechanisms of Disease, 3(1), Article 13. https://doi.org/10.1038/s41514-017-0013-z
- Cedergreen, N. (2014). Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology. PLOS ONE, 9(5), Article e96580. https://doi.org/10.1371/journal.pone.0096580
- Centre for Ecology and Hydrology. (2012). Windermere humic aqueous model. https://www.ceh.ac.uk/services/windermere-humic-aqueous-model-wham
- Chen, C.-Y. Y., & Yeh, J.-T. T. (1996). Toxicity of binary mixtures of reactive toxicants. Environmental Toxicology and Water Quality, 11(2), 83–90. https://doi.org/10.1002/(SICI)1098-2256(1996)11:2%3C;83::AID-TOX2%3E;3.0.CO;2-4
- Chioccioli, M., Hankamer, B., & Ross, I. L. (2014). Flow cytometry pulse width data enables rapid and sensitive estimation of biomass dry weight in the microalgae Chlamydomonas reinhardtii and Chlorella vulgaris. PLOS ONE, 9(5), Article e97269. https://doi.org/10.1371/journal.pone.0097269
- Crossland, N. O., & La Point, T. W. (1992). The design of mesocosm experiments. Environmental Toxicology and Chemistry, 11(1), 1–4. https://doi.org/10.1002/etc.5620110101
- Culture Collection of Algae & Protozoa. (2016). Culture collection of algae & protozoa. http://www.ccap.ac.uk/
- Dawson, D. A., Genco, N., Bensinger, H. M., Guinn, D., Il'Giovine, Z. J., Wayne Schultz, T., & Pöch, G. (2012). Evaluation of an asymmetry parameter for curve-fitting in single-chemical and mixture toxicity assessment. Toxicology, 292(2–3), 156–161. https://doi.org/10.1016/j.tox.2011.12.006
- De Laender, F., De Schamphelaere, K. A. C., Vanrolleghem, P. A., & Janssen, C. R. (2008). Do we have to incorporate ecological interactions in the sensitivity assessment of ecosystems? An examination of a theoretical assumption underlying species sensitivity distribution models. Environment International, 34(3), 390–396. https://doi.org/10.1016/j.envint.2007.09.006
- De Laender, F., De Schamphelaere, K. A. C., Vanrolleghem, P. A., & Janssen, C. R. (2009). Comparing ecotoxicological effect concentrations of chemicals established in multi-species vs. single-species toxicity test systems. Ecotoxicology and Environmental Safety, 72(2), 310–315. https://doi.org/10.1016/j.ecoenv.2008.07.014
- De Laender, F., Melian, C. J., Bindler, R., Van den Brink, P. J., Daam, M., Roussel, H., Juselius, J., Verschuren, D., & Janssen, C. R. (2014). The contribution of intra- and interspecific tolerance variability to biodiversity changes along toxicity gradients. Ecology Letters, 17(1), 72–81. https://doi.org/10.1111/ele.12210
- De Laender, F., Soetaert, K., De Schamphelaere, K. A. C., Middelburg, J. J., & Janssen, C. R. (2010). Ecological significance of hazardous concentrations in a planktonic food web. Ecotoxicology and Environmental Safety, 73(3), 247–253. https://doi.org/10.1016/j.ecoenv.2009.12.008
- De Schamphelaere, K. A. C., Heijerick, D. G., & Janssen, C. R. (2004). Comparison of the effect of different pH buffering techniques on the toxicity of copper and zinc to Daphnia magna and Pseudokirchneriella subcapitata. Ecotoxicology, 13(7), 697–705. https://doi.org/10.1007/s10646-003-4429-9
- De Schamphelaere, K. A. C., Unamuno, V. I. R., Tack, F. M. G., Vanderdeelen, J., & Janssen, C. R. (2005). Reverse osmosis sampling does not affect the protective effect of dissolved organic matter on copper and zinc toxicity to freshwater organisms. Chemosphere, 58(5), 653–658. https://doi.org/10.1016/j.chemosphere.2004.06.039
- Drescher, K., & Boedeker, W. (1995). Assessment of the combined effects of substances: The relationship between concentration addition and independent action. Biometrics, 51(2), 716–730. https://doi.org/10.2307/2532957
- Fettweis, A., Bergen, B., Hansul, S., De Schamphelaere, K., & Smolders, E. (2021). Correlated Ni, Cu, and Zn sensitivities of 8 freshwater algal species and consequences for low-level metal mixture effects. Environmental Toxicology and Chemistry, 40(7), 2015–2025. https://doi.org/10.1002/etc.5034
- Fettweis, A., De Schamphelaere, K., & Smolders, E. (2018). Zinc toxicity to Daphnia magna in a two-species microcosm can be predicted from single-species test data: The effects of phosphorus supply and pH. Environmental Toxicology and Chemistry, 37(8), 2153–2164. https://doi.org/10.1002/etc.4171
- Fleeger, J. W., Carman, K. R., & Nisbet, R. M. (2003). Indirect effects of contaminants in aquatic ecosystems. Science of the Total Environment, 317(1–3), 207–233. https://doi.org/10.1016/S0048-9697(03)00141-4
- Forbes, V. E., & Calow, P. (2002). Species sensitivity distributions revisited: A critical appraisal. Human and Ecological Risk Assessment, 8(3), 473–492. https://doi.org/10.1080/10807030290879781
- Forbes, V. E., Calow, P., Grimm, V., Hayashi, T. I., Jager, T., Katholm, A., Palmqvist, A., Pastorok, R., Salvito, D., Sibly, R., Spromberg, J., Stark, J., & Stillman, R. A. (2011). Adding value to ecological risk assessment with population modeling. Human and Ecological Risk Assessment, 17(2), 287–299. https://doi.org/10.1080/10807039.2011.552391
- Forbes, V. E., Calow, P., & Sibly, R. M. (2001). Are current species extrapolation models a good basis for ecological risk assessment. Environmental Toxicology and Chemistry, 20(2), 442–447. https://doi.org/10.1002/etc.5620200227
- Forbes, V. E., Sibly, R. M., & Calow, P. (2001). Toxicant impacts on density-limited populations: A critical review of theory, practice, and results. Ecological Applications, 11(4), 1249–1257. https://doi.org/10.2307/3061025
- Foster, P. L. (1982). Metal resistances of Chlorophyta from rivers polluted by heavy metals. Freshwater Biology, 12(1), 41–61. https://doi.org/10.1111/j.1365-2427.1982.tb00602.x
- Franklin, N. M., Stauber, J. L., & Lim, R. P. (2004). Development of multispecies algal bioassays using flow cytometry. Environmental Toxicology and Chemistry, 23(6), 1452–1462. https://doi.org/10.1897/03-250
- Galic, N., Hommen, U., Baveco, J. M., & Van Den Brink, P. J. (2010). Potential application of population models in the European ecological risk assessment of chemicals II: Review of models and their potential to address environmental protection aims. Integrated Environmental Assessment and Management, 6(3), 338–360. https://doi.org/10.1002/ieam.68
- Gao, C., De Schamphelaere, K. A. C., & Smolders, E. (2016). Zinc toxicity to the alga Pseudokirchneriella subcapitata decreases under phosphate limiting growth conditions. Aquatic Toxicology, 173, 74–82. https://doi.org/10.1016/j.aquatox.2016.01.010
- Gaur, J. P., & Rai, L. C. (2001). Heavy metal tolerance in algae. In L. C. Rai & J. P. Gaur (Eds.), Algal adaptation to environmental stresses (Vol. 173, pp. 363–388). Springer. https://doi.org/10.1007/978-3-642-59491-5_12
10.1007/978-3-642-59491-5_12 Google Scholar
- Gopalapillai, Y., & Hale, B. (2016). Evaluating the concentration addition approach for describing expected toxicity of a ternary metal mixture (Ni, Cu, Cd) using metal speciation and response surface regression. Environmental Chemistry, 13(3), 447–456. https://doi.org/10.1071/EN15124
- Hommen, U., Knopf, B., Rüdel, H., Schäfers, C., De Schamphelaere, K., Schlekat, C., & Garman, E. R. (2016). A microcosm study to support aquatic risk assessment of nickel: Community-level effects and comparison with bioavailability-normalized species sensitivity distributions. Environmental Toxicology and Chemistry, 35(5), 1172–1182. https://doi.org/10.1002/etc.3255
- Jonker, M. J., Svendsen, C., Bedaux, J. J. M., Bongers, M., & Kammenga, J. E. (2005). Significance testing of synergistic/antagonistic, dose level–dependent, or dose ratio–dependent effects in mixture dose–response analysis. Environmental Toxicology and Chemistry, 24(10), 2701–2713. https://doi.org/10.1897/04-431R.1
- Kilham, S. S., Kreeger, D. A., Lynn, S. G., Goulden, C. E., & Herrera, L. (1998). COMBO: A defined freshwater culture medium for algae and zooplankton. Hydrobiologia, 377(1–3), 147–159. https://doi.org/10.1023/a:1003231628456
- Kuwabara, J. S. (1985). Phosphorus–zinc interactive effects on growth by Selenastrum capricornutum (Chlorophyta). Environmental Science & Technology, 19(5), 417–421. https://doi.org/10.1021/es00135a005
- Liao, J. J. Z., & Liu, R. (2009). Re-parameterization of five-parameter logistic function. Journal of Chemometrics, 23(5), 248–253. https://doi.org/10.1002/cem.1218
- Nguyen, B., Rubbens, P., Kerckhof, F. M., Boon, N., De Baets, B., & Waegeman, W. (2019). Learning single-cell distances from cytometry data. Cytometry, Part A, 95(7), 782–791. https://doi.org/10.1002/cyto.a.23792
- Nys, C., Janssen, C. R., Blust, R., Smolders, E., & De Schamphelaere, K. A. C. (2016). Reproductive toxicity of binary and ternary mixture combinations of nickel, zinc, and lead to Ceriodaphnia dubia is best predicted with the independent action model. Environmental Toxicology and Chemistry, 35(7), 1796–1805. https://doi.org/10.1002/etc.3332
- Nys, C., Van Regenmortel, T., Janssen, C. R., Oorts, K., Smolders, E., & De Schamphelaere, K. A. C. (2018). A framework for ecological risk assessment of metal mixtures in aquatic systems. Environmental Toxicology and Chemistry, 37(3), 623–642. https://doi.org/10.1002/etc.4039
- Nys, C., Versieren, L., Cordery, K. I., Blust, R., Smolders, E., & De Schamphelaere, K. A. C. (2017). Systematic evaluation of chronic metal-mixture toxicity to three species and implications for risk assessment. Environmental Science & Technology, 51(8), 4615–4623. https://doi.org/10.1021/acs.est.6b05688
- Odum, E. P. (1984). The mesocosm. Bioscience, 34(9), 558–562. https://doi.org/10.2307/1309598
- Organisation for Economic Co-operation and Development (OECD). (2011). Test No. 201: Alga, growth inhibition test. OECD guidelines for the testing of chemicals. https://doi.org/10.1787/9789264069923-en
10.1787/9789264069923-en Google Scholar
- Ritchie, J. D., & Perdue, E. M. (2003). Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochimica et Cosmochimica Acta, 67(1), 85–96. https://doi.org/10.1016/S0016-7037(02)01044-X
- Rohr, J. R., Kerby, J. L., & Sih, A. (2006). Community ecology as a framework for predicting contaminant effects. Trends in Ecology and Evolution, 21(11), 606–613. https://doi.org/10.1016/j.tree.2006.07.002
- Satoh, A., Vudikaria, L., Kurano, N., & Miyachi, S. (2005). Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Sb, Pb and Cd. Environment International, 31(5), 713–722. https://doi.org/10.1016/j.envint.2005.01.001
- Serkiz, S. M., & Perdue, E. M. (1990). Isolation of dissolved organic matter from the suwannee river using reverse osmosis. Water Research, 24(7), 911–916. https://doi.org/10.1016/0043-1354(90)90142-S
- Serra, A., Guasch, H., Admiraal, W., Van Der Geest, H. G., & Van Beusekom, S. A. M. (2010). Influence of phosphorus on copper sensitivity of fluvial periphyton: The role of chemical, physiological and community-related factors. Ecotoxicology, 19(4), 770–780. https://doi.org/10.1007/s10646-009-0454-7
- Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(4), 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
- Shaw, J. R., Dempsey, T. D., Chen, C. Y., Hamilton, J. W., & Folt, C. L. (2006). Comparative toxicity of cadmium, zinc, and mixtures of cadium and zinc to daphnids. Environmental Toxicology and Chemistry, 25(1), 182. https://doi.org/10.1897/05-243r.1
- Smith, R. M., Martell, A. E., & Motekaitis, R. J. (2004). NIST critically selected stability constants of metal complexes database. NIST standard reference database 46 (Version 8.0). National Institute of Standards and Technology. https://www.nist.gov/document-14894
- Somerfield, P. J. (2008). Identification of the Bray-Curtis similarity index: Comment on Yoshioka (2008). Marine Ecology Progress Series, 372, 303–306. https://doi.org/10.3354/meps07841
- Taylor, B. M. (2020). A multi-way correlation coefficient. arXiv, 2003.02561. http://arxiv.org/abs/2003.02561
- Tipping, E. (2002). Cation binding by humic substances. Cambridge University Press. https://doi.org/10.1017/CBO9780511535598
10.1017/CBO9780511535598 Google Scholar
- Tipping, E., & Lofts, S. (2015). Testing WHAM-FTOX with laboratory toxicity data for mixtures of metals (Cu, Zn, Cd, Ag, Pb). Environmental Toxicology and Chemistry, 34(4), 788–798. https://doi.org/10.1002/etc.2773
- Tipping, E., Lofts, S., & Sonke, J. E. (2011). Humic ion-binding model VII: A revised parameterisation of cation-binding by humic substances. Environmental Chemistry, 8(3), 225–235. https://doi.org/10.1071/EN11016
- Tlili, A., Berard, A., Blanck, H., Bouchez, A., Cássio, F., Eriksson, K. M., Morin, S., Montuelle, B., Navarro, E., Pascoal, C., Pesce, S., Schmitt-Jansen, M., & Behra, R. (2016). Pollution-induced community tolerance (PICT): Towards an ecologically relevant risk assessment of chemicals in aquatic systems. Freshwater Biology, 61(12), 2141–2151. https://doi.org/10.1111/fwb.12558
- Twiss, M. R., & Nalewajko, C. (1992). Influence of phosphorus nutrition on copper toxicity to three strains of Scenedesmus acutus (Chlorophyceae). Journal of Phycology, 28(3), 291–298. https://doi.org/10.1111/j.0022-3646.1992.00291.x
- Van Den Brink, P. J., Blake, N., Brock, T. C. M., & Maltby, L. (2006). Predictive value of species sensitivity distributions for effects of herbicides in freshwater ecosystems. Human and Ecological Risk Assessment, 12(4), 645–674. https://doi.org/10.1080/10807030500430559
- Van den Brink, P. J., & Ter Braak, C. J. F. (1998). Multivariate analysis of stress in experimental ecosystems by principal response curves and similarity analysis. Aquatic Ecology, 32(2), 163–178. https://doi.org/10.1023/a:1009944004756
10.1023/A:1009944004756 Google Scholar
- Van de Perre, D., Roessink, I., Janssen, C. R., Smolders, E., Van Regenmortel, T., Van Wichelen, J., Vyverman, W., Van den Brink, P. J., & De Schamphelaere, K. A. C. (2016). The effects of zinc on the structure and functioning of a freshwater community: A microcosm experiment. Environmental Toxicology and Chemistry, 35(11), 2698–2712. https://doi.org/10.1002/etc.3435
- Van Ewijk, P. H., & Hoekstra, J. A. (1993). Calculation of the EC50 and its confidence interval when subtoxic stimulus is present. Ecotoxicology and Environmental Safety, 25(1), 25–32. https://doi.org/10.1006/eesa.1993.1003
- Van Laer, L., Smolders, E., Degryse, F., Janssen, C., & De Schamphelaere, K. A. C. (2006). Speciation of nickel in surface waters measured with the Donnan membrane technique. Analytica Chimica Acta, 578(2), 195–202. https://doi.org/10.1016/j.aca.2006.06.070
- Van Regenmortel, T., Nys, C., Janssen, C. R., Lofts, S., & De Schamphelaere, K. A. C. (2017). Comparison of four methods for bioavailability-based risk assessment of mixtures of Cu, Zn, and Ni in freshwater. Environmental Toxicology and Chemistry, 36(8), 2123–2138. https://doi.org/10.1002/etc.3746
- Veldhuis, M. J. W., & Kraay, G. W. (2000). Application of flow cytometry in marine phytoplankton research: Current applications and future perspectives. Scientia Marina, 64(2), 121–134. https://doi.org/10.3989/scimar.2000.64n2121
- Veldhuis, M. J. W., & Kraay, G. W. (2004). Phytoplankton in the subtropical Atlantic Ocean: Towards a better assessment of biomass and composition. Deep Sea Research Part I: Oceanographic Research Papers, 51(4), 507–530. https://doi.org/10.1016/j.dsr.2003.12.002
- Verheyen, L., Versieren, L., & Smolders, E. (2014). Natural dissolved organic matter mobilizes Cd but does not affect the Cd uptake by the green algae Pseudokirchneriella subcapitata (Korschikov) in resin buffered solutions. Aquatic Toxicology, 154, 80–86. https://doi.org/10.1016/j.aquatox.2014.05.009
- Versieren, L., Evers, S., De Schamphelaere, K., Blust, R., & Smolders, E. (2016). Mixture toxicity and interactions of copper, nickel, cadmium, and zinc to barley at low effect levels: Something from nothing? Environmental Toxicology and Chemistry, 35(10), 2483–2492. https://doi.org/10.1002/etc.3380
- Yachi, S., & Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 96(4), 1463–1468. https://doi.org/10.1073/pnas.96.4.1463