Temperature effect and kinetics, LiZr2(PO4)3 and Li1.2Al0.2Zr1.8(PO4)3 and electrochemical properties for rechargeable ion batteries
Bhargav Akkinepally
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
School of General Education, Yeungnam University, Gyeongsan, Republic of Korea
Bhargav Akkinepally and I. Neelakanta Reddy contributed equally to this work.
Search for more papers by this authorCorresponding Author
I. Neelakanta Reddy
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
Bhargav Akkinepally and I. Neelakanta Reddy contributed equally to this work.
Correspondence
I. Neelakanta Reddy, Tae Jo Ko and Jaesool Shim, School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Email: [email protected], [email protected] and [email protected]
M. V. Reddy, Nouveau Monde Graphite, Saint-Michel-de-Saints, Canada.
Email: [email protected]
Yogendra Kumar Mishra, Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark.
Email: [email protected]
Karim Zaghib, Department of Chemical and Materials Engineering, Concordia University, Montréal, Canada.
Email: [email protected]
Search for more papers by this authorV. Manjunath
Department of Physics, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
Search for more papers by this authorCorresponding Author
M. V. Reddy
Nouveau Monde Graphite, Saint-Michel-de-Saints, Canada
Correspondence
I. Neelakanta Reddy, Tae Jo Ko and Jaesool Shim, School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Email: [email protected], [email protected] and [email protected]
M. V. Reddy, Nouveau Monde Graphite, Saint-Michel-de-Saints, Canada.
Email: [email protected]
Yogendra Kumar Mishra, Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark.
Email: [email protected]
Karim Zaghib, Department of Chemical and Materials Engineering, Concordia University, Montréal, Canada.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Yogendra Kumar Mishra
Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark
Correspondence
I. Neelakanta Reddy, Tae Jo Ko and Jaesool Shim, School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Email: [email protected], [email protected] and [email protected]
M. V. Reddy, Nouveau Monde Graphite, Saint-Michel-de-Saints, Canada.
Email: [email protected]
Yogendra Kumar Mishra, Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark.
Email: [email protected]
Karim Zaghib, Department of Chemical and Materials Engineering, Concordia University, Montréal, Canada.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Tae Jo Ko
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
Correspondence
I. Neelakanta Reddy, Tae Jo Ko and Jaesool Shim, School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Email: [email protected], [email protected] and [email protected]
M. V. Reddy, Nouveau Monde Graphite, Saint-Michel-de-Saints, Canada.
Email: [email protected]
Yogendra Kumar Mishra, Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark.
Email: [email protected]
Karim Zaghib, Department of Chemical and Materials Engineering, Concordia University, Montréal, Canada.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Karim Zaghib
Department of Chemical and Materials Engineering, Concordia University, Montréal, Canada
Correspondence
I. Neelakanta Reddy, Tae Jo Ko and Jaesool Shim, School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Email: [email protected], [email protected] and [email protected]
M. V. Reddy, Nouveau Monde Graphite, Saint-Michel-de-Saints, Canada.
Email: [email protected]
Yogendra Kumar Mishra, Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark.
Email: [email protected]
Karim Zaghib, Department of Chemical and Materials Engineering, Concordia University, Montréal, Canada.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Jaesool Shim
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
Correspondence
I. Neelakanta Reddy, Tae Jo Ko and Jaesool Shim, School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Email: [email protected], [email protected] and [email protected]
M. V. Reddy, Nouveau Monde Graphite, Saint-Michel-de-Saints, Canada.
Email: [email protected]
Yogendra Kumar Mishra, Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark.
Email: [email protected]
Karim Zaghib, Department of Chemical and Materials Engineering, Concordia University, Montréal, Canada.
Email: [email protected]
Search for more papers by this authorBhargav Akkinepally
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
School of General Education, Yeungnam University, Gyeongsan, Republic of Korea
Bhargav Akkinepally and I. Neelakanta Reddy contributed equally to this work.
Search for more papers by this authorCorresponding Author
I. Neelakanta Reddy
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
Bhargav Akkinepally and I. Neelakanta Reddy contributed equally to this work.
Correspondence
I. Neelakanta Reddy, Tae Jo Ko and Jaesool Shim, School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Email: [email protected], [email protected] and [email protected]
M. V. Reddy, Nouveau Monde Graphite, Saint-Michel-de-Saints, Canada.
Email: [email protected]
Yogendra Kumar Mishra, Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark.
Email: [email protected]
Karim Zaghib, Department of Chemical and Materials Engineering, Concordia University, Montréal, Canada.
Email: [email protected]
Search for more papers by this authorV. Manjunath
Department of Physics, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
Search for more papers by this authorCorresponding Author
M. V. Reddy
Nouveau Monde Graphite, Saint-Michel-de-Saints, Canada
Correspondence
I. Neelakanta Reddy, Tae Jo Ko and Jaesool Shim, School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Email: [email protected], [email protected] and [email protected]
M. V. Reddy, Nouveau Monde Graphite, Saint-Michel-de-Saints, Canada.
Email: [email protected]
Yogendra Kumar Mishra, Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark.
Email: [email protected]
Karim Zaghib, Department of Chemical and Materials Engineering, Concordia University, Montréal, Canada.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Yogendra Kumar Mishra
Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark
Correspondence
I. Neelakanta Reddy, Tae Jo Ko and Jaesool Shim, School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Email: [email protected], [email protected] and [email protected]
M. V. Reddy, Nouveau Monde Graphite, Saint-Michel-de-Saints, Canada.
Email: [email protected]
Yogendra Kumar Mishra, Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark.
Email: [email protected]
Karim Zaghib, Department of Chemical and Materials Engineering, Concordia University, Montréal, Canada.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Tae Jo Ko
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
Correspondence
I. Neelakanta Reddy, Tae Jo Ko and Jaesool Shim, School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Email: [email protected], [email protected] and [email protected]
M. V. Reddy, Nouveau Monde Graphite, Saint-Michel-de-Saints, Canada.
Email: [email protected]
Yogendra Kumar Mishra, Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark.
Email: [email protected]
Karim Zaghib, Department of Chemical and Materials Engineering, Concordia University, Montréal, Canada.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Karim Zaghib
Department of Chemical and Materials Engineering, Concordia University, Montréal, Canada
Correspondence
I. Neelakanta Reddy, Tae Jo Ko and Jaesool Shim, School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Email: [email protected], [email protected] and [email protected]
M. V. Reddy, Nouveau Monde Graphite, Saint-Michel-de-Saints, Canada.
Email: [email protected]
Yogendra Kumar Mishra, Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark.
Email: [email protected]
Karim Zaghib, Department of Chemical and Materials Engineering, Concordia University, Montréal, Canada.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Jaesool Shim
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
Correspondence
I. Neelakanta Reddy, Tae Jo Ko and Jaesool Shim, School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Email: [email protected], [email protected] and [email protected]
M. V. Reddy, Nouveau Monde Graphite, Saint-Michel-de-Saints, Canada.
Email: [email protected]
Yogendra Kumar Mishra, Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark.
Email: [email protected]
Karim Zaghib, Department of Chemical and Materials Engineering, Concordia University, Montréal, Canada.
Email: [email protected]
Search for more papers by this authorFunding information: National Research Foundation, Grant/Award Numbers: 2020R1A2C1012439, 2020R1A4A1019227
Summary
A NASICON-type LiZr2(PO4)3 (LZP) and Li1.2Al0.2Zr1.8(PO4)3 (LAZP) anode materials are synthesized via a facile method, materials were characterized by a variety of structural techniques, investigated the electrochemical performance for rechargeable battery applications. A highly stable rhombohedral phase of LAZP is noticed at room temperature, with a discharge capacity of 909 mAh.g−1, which is 1.6 times higher than that of LZP. Further, the highly stable charge storage performance is observed up to 3000 cycles with a Coulombic efficiency of 99%. For the first time, we investigated the in-situ temperature effect on the discharge capacity of the assembled anode material, found a strong effect on the discharge capacity, and achieved ~120 and 149 mAh.g−1 at 65°C for LZP and LAZP anodes. Furthermore, the real-time charge holding effect of LAZP cell is performed with the computer, the cell worked well in the CMOS battery slot without a CMOS battery error during CPU turn-on condition for 1536 h. In brief, an optimized electrode material of LAZP showed greater stability and capacity with high efficiency compared with LZP even at elevated temperatures. Hence, LAZP may be utilized to fabricate a coin cell for real time applications.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
er8129-sup-0001-Supinfo.docxWord 2007 document , 4.1 MB | Appendix S1 |
er8129-sup-0002-VideoS1.aviAVI video, 13.6 MB | Video S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010; 22: 587-603. doi:10.1021/cm901452z
- 2Arifeen WU, Choi J, Yoo K, Shim J, Ko TJ. A nano-silica/polyacrylonitrile/polyimide composite separator for advanced fast charging lithium-ion batteries. Chem Eng J. 2021; 417:128075. doi:10.1016/j.cej.2020.128075
- 3Dong T, Arifeen WU, Choi J, Yoo K, Ko T. Surface-modified electrospun polyacrylonitrile nano-membrane for a lithium-ion battery separator based on phase separation mechanism. Chem Eng J. 2020; 398:125646. doi:10.1016/j.cej.2020.125646
- 4Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016; 1: 1-16. doi:10.1038/natrevmats.2016.13
- 5Li S, Meng X, Yi Q, et al. Structural and electrochemical properties of LiMn0.6Fe0.4PO4 as a cathode material for flexible lithium-ion batteries and self-charging power pack. Nano Energy. 2018; 52: 510-516. doi:10.1016/j.nanoen.2018.08.007
- 6Reddy MV, Subba Rao GV, Chowdari BVR. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev. 2013; 113: 5364-5457. doi:10.1021/cr3001884
- 7Reddy MV, Mauger A, Julien CM, Paolella A, Zaghib K. Brief history of early lithium-battery development. Materials. 2020; 13: 1884. doi:10.3390/ma13081884
- 8Reddy MV, Julien CM, Mauger A, Zaghib K. Sulfide and oxide inorganic solid electrolytes for all-solid-state Li batteries: a review. Nanomaterials. 2020; 10: 1606. doi:10.3390/nano10081606
- 9Tang F, Gao J, Ruan Q, et al. Graphene-wrapped MnO/C composites by MOFs-derived as cathode material for aqueous zinc ion batteries. Electrochim Acta. 2020; 353:136570. doi:10.1016/j.electacta.2020.136570
- 10Li B, Zhang X, Wang T, et al. Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 2021; 14: 6. doi:10.1007/s40820-021-00764-7
- 11Arifeen WU, Kim M, Ting D, et al. Hybrid thermal resistant electrospun polymer membrane as the separator of lithium ion batteries. Mater Chem Phys. 2020; 245:122780. doi:10.1016/j.matchemphys.2020.122780
- 12Li Y, Li Z, Chen C, et al. Recent progress in Li and Mn rich layered oxide cathodes for Li-ion batteries. J Energy Chem. 2021; 61: 368-385. doi:10.1016/j.jechem.2021.01.034
- 13Wang Y, An N, Wen L, et al. Recent progress on the recycling technology of Li-ion batteries. J Energy Chem. 2021; 55: 391-419. doi:10.1016/j.jechem.2020.05.008
- 14Sood P, Kim KC, Jang SS. Electrochemical and electronic properties of nitrogen doped fullerene and its derivatives for lithium-ion battery applications. J Energy Chem. 2018; 27: 528-534. doi:10.1016/j.jechem.2017.11.009
- 15Goodenough JB. Energy storage materials: a perspective. Energy Storage Mater. 2015; 1: 158-161. doi:10.1016/j.ensm.2015.07.001
- 16Xiang Y, Jiang Y, Liu S, et al. Improved electrochemical performance of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathode materials for lithium ion batteries synthesized by ionic-liquid-assisted hydrothermal method. Front Chem. 2020; 8:1-9.
- 17Chen Z, Ren Y, Jansen AN, Lin C, Weng W, Amine K. New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries. Nat Commun. 2013; 4: 1513. doi:10.1038/ncomms2518
- 18Hu D, Chen G, Tian J, et al. Unrevealing the effects of low temperature on cycling life of 21700-type cylindrical Li-ion batteries. J Energy Chem. 2021; 60: 104-110. doi:10.1016/j.jechem.2020.12.024
- 19Knauth P. Inorganic solid Li ion conductors: an overview. Solid State Ion. 2009; 180: 911-916. doi:10.1016/j.ssi.2009.03.022
- 20Meesala Y, Jena A, Chang H, Liu R-S. Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries. ACS Energy Lett. 2017; 2: 2734-2751. doi:10.1021/acsenergylett.7b00849
- 21Wu F, Tan G, Chen R, Li L, Xiang J, Zheng Y. Novel solid-state Li/LiFePO4 battery configuration with a ternary nanocomposite electrolyte for practical applications. Adv Mater. 2011; 23: 5081-5085. doi:10.1002/adma.201103161
- 22Xu H, Wang S, Wilson H, Zhao F, Manthiram A. Y-doped NASICON-type LiZr2(PO4)3 solid electrolytes for lithium-metal batteries. Chem Mater. 2017; 29: 7206-7212. doi:10.1021/acs.chemmater.7b01463
- 23Xiong L, Ren Z, Xu Y, Mao S, Lei P, Sun M. LiF assisted synthesis of LiTi2(PO4)3 solid electrolyte with enhanced ionic conductivity. Solid State Ion. 2017; 309: 22-26. doi:10.1016/j.ssi.2017.06.018
- 24Prabu M, Reddy MV, Selvasekarapandian S, Rao GVS, Chowdari BVR, Preparation, structural characterization and ionic conductivity studies of calcium doped LiZr2(PO4)3. Solid State Ionics. World Scientific, 2012: 442–449. 10.1142/9789814415040_0052
- 25Cheng X, Ran F, Huang Y, et al. Insight into the synergistic effect of N, S co-doping for carbon coating layer on niobium oxide anodes with ultra-Long life. Adv Funct Mater. 2021; 31: 2100311. doi:10.1002/adfm.202100311
- 26Peng N, Cheng X, Yu H, et al. LiY(MoO4)2 nanotubes: novel zero-strain anode for electrochemical energy storage. Energy Storage Mater. 2019; 21: 297-307. doi:10.1016/j.ensm.2018.12.003
- 27Li Y, Zhou W, Chen X, et al. Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proc Natl Acad Sci USA. 2016; 113: 13313-13317. doi:10.1073/pnas.1615912113
- 28Xie H, Li Y, Goodenough JB. NASICON-type Li1+2xZr2−xCax(PO4)3 with high ionic conductivity at room temperature. RSC Adv. 2011; 1: 1728-1731. doi:10.1039/C1RA00383F
- 29Mariappan CR, Kumar P, Kumar A, et al. Ionic conduction and dielectric properties of yttrium doped LiZr2(PO4)3 obtained by a Pechini-type polymerizable complex route. Ceram Int. 2018; 44: 15509-15516. doi:10.1016/j.ceramint.2018.05.211
- 30Catti M, Stramare S. Lithium location in NASICON-type Li+ conductors by neutron diffraction: II. Rhombohedral α-LiZr2(PO4)3 at T=423 K. Solid State Ion. 2000; 136–137: 489-494. doi:10.1016/S0167-2738(00)00459-8
- 31Casciola M, Costantino U, Merlini L, Andersen IGK, Andersen EK. Preparation, structural characterization and conductivity of LiZr2(PO4)3. Solid State Ion. 1988; 26: 229-235. doi:10.1016/0167-2738(88)90231-7
- 32Iglesias JE, Pecharromán C. Room temperature triclinic modification of NASICON-type LiZr2(PO4)3. Solid State Ion. 1998; 112: 309-318. doi:10.1016/S0167-2738(98)00208-2
- 33El-Shinawi H, Greaves C, Janek J. Sol–gel synthesis and room-temperature properties of α-LiZr2(PO4)3. RSC Adv. 2015; 5: 17054-17059. doi:10.1039/C4RA16804F
- 34Panchal S, Mathewson S, Fraser R, Culham R, Fowler M. Thermal Management of Lithium-ion Pouch Cell with indirect liquid cooling using dual cold plates approach. SAE Int J Altern Powertrains. 2015; 4: 293-307. doi:10.4271/2015-01-1184
- 35Rao Z, Wang S, Wu M, Lin Z, Li F. Experimental investigation on thermal management of electric vehicle battery with heat pipe. Energ Conver Manage. 2013; 65: 92-97. doi:10.1016/j.enconman.2012.08.014
- 36Jaguemont J, Boulon L, Dubé Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl Energy. 2016; 164: 99-114. doi:10.1016/j.apenergy.2015.11.034
- 37Liu QQ, Xiong DJ, Petibon R, Du CY, Dahn JR. Gas evolution during unwanted lithium plating in Li-ion cells with EC-based or EC-free electrolytes. J Electrochem Soc. 2016; 163: A3010-A3015. doi:10.1149/2.0711614jes
- 38Sato N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles. J Power Sources. 2001; 99: 70-77. doi:10.1016/S0378-7753(01)00478-5
- 39Zhang SS, Xu K, Jow TR. The low temperature performance of Li-ion batteries. J Power Sources. 2003; 115: 137-140. doi:10.1016/S0378-7753(02)00618-3
- 40Giuliano MR, Prasad AK, Advani SG. Experimental study of an air-cooled thermal management system for high capacity lithium–titanate batteries. J Power Sources. 2012; 216: 345-352. doi:10.1016/j.jpowsour.2012.05.074
- 41Wu M-S, Chiang P-CJ. High-rate capability of lithium-ion batteries after storing at elevated temperature. Electrochim Acta. 2007; 52: 3719-3725. doi:10.1016/j.electacta.2006.10.045
- 42Reddy MV, Subba Rao GV, Chowdari BVR. Preparation and characterization of LiNi0.5Co0.5O2 and LiNi0.5Co0.4Al0.1O2 by molten salt synthesis for Li ion batteries. J Phys Chem C. 2007; 111: 11712-11720. doi:10.1021/jp0676890
- 43Reddy MV, Madhavi S, Subba Rao GV, Chowdari BVR, Metal oxyfluorides TiOF2 and NbO2F as anodes for Li-ion batteries, spec. Issue Sel. Pap. Int. Power Sources Symp. 2005 Together Regul. Pap 162 (2006) 1312–1321. 10.1016/j.jpowsour.2006.08.020
- 44Tan KS, Reddy MV, Rao GVS, Chowdari BVR. Effect of AlPO4-coating on cathodic behaviour of Li(Ni0.8Co0.2)O2. J Power Sources. 2005; 141: 129-142. doi:10.1016/j.jpowsour.2004.08.044
- 45Reddy IN, Akkinepally B, Reddy CV, Sreedhar A, Ko TJ, Shim J. A systematic study of annealing environment and Al dopant effect on NASICON-type LiZr2(PO4)3 solid electrolyte. Ionics. 2020; 26: 4287-4298. doi:10.1007/s11581-020-03622-5
- 46Subramanian MA, Subramanian R, Clearfield A. Lithium ion conductors in the system AB(IV)2(PO4)3 (B = Ti, Zr and Hf). Solid State Ion. 1986; 18–19: 562-569. doi:10.1016/0167-2738(86)90179-7
- 47Reddy MV, Adams S. Molten salt synthesis and characterization of fast ion conductor Li6.75La3Zr1.75Ta0.25O12. J Solid State Electrochem. 2017; 21: 2921-2928. doi:10.1007/s10008-017-3615-2
- 48Reddy MV, Sharma N, Adams S, Rao RP, Peterson VK, Chowdari BVR. Evaluation of undoped and M-doped TiO2, where M = Sn, Fe, Ni/Nb, Zr, V, and Mn, for lithium-ion battery applications prepared by the molten-salt method. RSC Adv. 2015; 5: 29535-29544. doi:10.1039/C5RA00206K
- 49Wysocka J, Krakowiak S, Ryl J. Evaluation of citric acid corrosion inhibition efficiency and passivation kinetics for aluminium alloys in alkaline media by means of dynamic impedance monitoring. Electrochim Acta. 2017; 258: 1463-1475. doi:10.1016/j.electacta.2017.12.017
- 50Zhang Y, Chen K, Shen Y, Lin Y, Nan C-W. Enhanced lithium-ion conductivity in a LiZr2(PO4)3 solid electrolyte by Al doping. Ceram Int. 2017; 43: S598-S602. doi:10.1016/j.ceramint.2017.05.198
- 51Noda Y, Nakano K, Takeda H, Kotobuki M, Lu L, Nakayama M. Computational and experimental investigation of the electrochemical stability and Li-ion conduction mechanism of LiZr2(PO4)3. Chem Mater. 2017; 29: 8983-8991. doi:10.1021/acs.chemmater.7b01703
- 52Kim H-S, Ahnn HS, Lee J-H, Sun Y-K, Yoon CS. Electrochemical properties of sol–gel prepared Li2ZrxTi1−x(PO4)3 electrodes for lithium secondary batteries. J Electrochem Soc. 2011; 158: A396. doi:10.1149/1.3551533
- 53Kitada K, Murayama H, Fukuda K, Arai H, Uchimoto Y, Ogumi Z. Effect of potential profile on battery capacity decrease during continuous cycling. J Phys Chem C. 2017; 121: 6018-6023. doi:10.1021/acs.jpcc.6b12937
- 54Ding Z, Yao B, Feng J, Zhang J. Enhanced rate performance and cycling stability of a CoCO3 – polypyrrole composite for lithium ion battery anodes. J Mater Chem A. 2013; 1: 11200-11209. doi:10.1039/C3TA12227A
- 55Huang Y, Xu Z, Mai J, et al. Revisiting the origin of cycling enhanced capacity of Fe3O4 based nanostructured electrode for lithium ion batteries. Nano Energy. 2017; 41: 426-433. doi:10.1016/j.nanoen.2017.10.001
- 56Das B, Reddy MV, Krishnamoorthi C, et al. Carbothermal synthesis, spectral and magnetic characterization and Li-cyclability of the Mo-cluster compounds, LiYMo3O8 and Mn2Mo3O8. Electrochim Acta. 2009; 54: 3360-3373. doi:10.1016/j.electacta.2008.12.049
- 57Long R, Wang GL, Hu ZL, Sun PF, Zhang L. Gradually activated lithium uptake in sodium citrate toward high-capacity organic anode for lithium-ion batteries. Rare Met. 2021; 40: 1366-1372. doi:10.1007/s12598-020-01502-5
- 58Park YJ, Lee KS, Shim J, Lee J-H, Kim Y, Son DI. Suppression of volume expansion by graphene encapsulated Co3O4 quantum dots for boosting lithium storage. J Ind Eng Chem. 2021; 95: 333-339. doi:10.1016/j.jiec.2021.01.004
- 59Reddy IN, Akkinepally B, Manjunath V, Neelima G, Reddy MV, Shim J. SnO2 quantum dots distributed along V2O5 Nanobelts for utilization as a high-capacity storage hybrid material in Li-ion batteries. Molecules. 2021; 26: 7262.
- 60Kashale AA, Rasal AS, Kamble GP, et al. Biosynthesized co-doped TiO2 nanoparticles based anode for lithium-ion battery application and investigating the influence of dopant concentrations on its performance. Compos Part B Eng. 2019; 167: 44-50. doi:10.1016/j.compositesb.2018.12.001
- 61Zhang B, Huang Z-D, Oh SW, Kim J-K. Improved rate capability of carbon coated Li3.9Sn0.1Ti5O12 porous electrodes for Li-ion batteries. J Power Sources. 2011; 196: 10692-10697. doi:10.1016/j.jpowsour.2011.08.114
- 62Zhao H, Li Y, Zhu Z, Lin J, Tian Z, Wang R. Structural and electrochemical characteristics of Li4−xAlxTi5O12 as anode material for lithium-ion batteries. Electrochim Acta. 2008; 53: 7079-7083. doi:10.1016/j.electacta.2008.05.038
- 63Luo J-Y, Xia Y-Y. Aqueous Lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability**. Adv Funct Mater. 2007; 17: 3877-3884. doi:10.1002/adfm.200700638
- 64Singer JP, Birke KP. Kinetic study of low temperature capacity fading in Li-ion cells. J Energy Storage. 2017; 13: 129-136. doi:10.1016/j.est.2017.07.002
- 65Zhang G, Wei X, Han G, et al. Lithium plating on the anode for lithium-ion batteries during long-term low temperature cycling. J Power Sources. 2021; 484: 229312. doi:10.1016/j.jpowsour.2020.229312