Investigating the potential of lead-free double perovskite Cs2AgBiBr6 material for solar cell applications: A theoretical study
Abhishek Raj
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
Search for more papers by this authorCorresponding Author
Manish Kumar
Experimental Research Laboratory, Department of Physics, ARSD College, University of Delhi, New Delhi, India
Correspondence
Manish Kumar, Experimental Research Laboratory, Department of Physics ARSD College, University of Delhi New Delhi 110021, India.
Email: [email protected]
Search for more papers by this authorArvind Kumar
Experimental Research Laboratory, Department of Physics, ARSD College, University of Delhi, New Delhi, India
Search for more papers by this authorAmel Laref
Department of Physics, King Saud University, Riyadh, Saudi Arabia
Search for more papers by this authorAvneesh Anshul
Energy and Resource Management Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, Maharashtra, India
Search for more papers by this authorAbhishek Raj
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
Search for more papers by this authorCorresponding Author
Manish Kumar
Experimental Research Laboratory, Department of Physics, ARSD College, University of Delhi, New Delhi, India
Correspondence
Manish Kumar, Experimental Research Laboratory, Department of Physics ARSD College, University of Delhi New Delhi 110021, India.
Email: [email protected]
Search for more papers by this authorArvind Kumar
Experimental Research Laboratory, Department of Physics, ARSD College, University of Delhi, New Delhi, India
Search for more papers by this authorAmel Laref
Department of Physics, King Saud University, Riyadh, Saudi Arabia
Search for more papers by this authorAvneesh Anshul
Energy and Resource Management Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, Maharashtra, India
Search for more papers by this authorSummary
Recently, Silver-Bismuth based lead-free double perovskite solar cells (PSCs) have established their significance as a possible substitute for lead-based absorber in the PSCs due to its higher stability and nontoxic properties. In the present work, lead-free double perovskite Cs2AgBiBr6 compound has been used as an absorber in the layered structure of PSC. This compound has been studied in details for its physical properties (electronic and optical) using the first principle calculation. Additionally, a lead-free PSC is designed in SACPS-1D simulation software with cell configuration of FTO/TiO2/Cs2AgBiBr6/Spiro-OMeTAD/Au and studied for its various parameters useful for its applications in PSCs. Initially, the device is optimized under experimental counterpart to validate the simulation study and further various other material parameters such as band-gap, defect density, thickness of absorber, series resistance and operating temperature are optimized to deliver improved performance. The final optimized lead-free double PSCs exhibited power conversion efficiency (PCE) of 6.68%, open-circuit voltage (VOC) of 0.90 V, current density (JSC) of 11.09 mA/cm2 and fill factor (FF) of 66.61%. Further, different ETLs such as TiO2, SnO2, ZnO, IGZO and PCBM are simulated with proposed device configuration and found TiO2 and SnO2 as suitable ETL candidate for Cs2AgBiBr6 based lead-free PSCs.
CONFLICT OF INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this review article.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
er8099-sup-0001-supinfo.pdfPDF document, 558.3 KB | Appendix S1. Supporting information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Jeong J, Kim MM, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature. 2021; 592: 381-385. doi:10.1038/s41586-021-03406-5
- 2Raj A, Kumar M, Anshul A. Recent advancement in inorganic-organic electron transport layers in perovskite solar cell: current status and future outlook. Mater Today Chem. 2021; 22:100595. doi:10.1016/j.mtchem.2021.100595
- 3Stranks SD, Snaith HJ. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol. 2015; 10: 391-402. doi:10.1038/nnano.2015.90
- 4Tong X, Lin F, Wu J, Wang ZM. High performance perovskite solar cells. Adv Sci. 2015; 3: 1-18. doi:10.1002/advs.201500201
10.1002/advs.201500201 Google Scholar
- 5Ke W, Kanatzidis MG. Prospects for low-toxicity lead-free perovskite solar cells. Nat Commun. 2019; 10: 1-4. doi:10.1038/s41467-019-08918-3
- 6Kumar M, Raj A, Kumar A, Anshul A. Theoretical evidence of high power conversion efficiency in double perovskite solar cell device. Opt Mater. 2021; 111:110565. doi:10.1016/j.optmat.2020.110565
- 7Zhang Q, Hao F, Li J, Zhou Y, Wei Y, Lin H. Perovskite solar cells: must lead be replaced–and can it be done? Sci Technol Adv Mater. 2018; 19: 425-442. doi:10.1080/14686996.2018.1460176
- 8Jena AK, Kulkarni A, Miyasaka T. Halide perovskite photovoltaics: background, status, and future prospects. Chem Rev. 2019; 119: 3036-3103. doi:10.1021/acs.chemrev.8b00539
- 9Xiao Z, Song Z, Yan Y. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv Mater. 2019; 31: 1803792. doi:10.1002/adma.201803792
- 10Raj A, Kumar M, Bherwani H, Gupta A, Anshul A. Evidence of improved power conversion efficiency in lead-free CsGeI 3 based perovskite solar cell heterostructure via scaps simulation. J Vac Sci Technol B. 2021; 39:012401. doi:10.1116/6.0000718
- 11Li P, Gao W, Ran C, Dong H, Hou X, Wu Z. Post-treatment engineering of vacuum-deposited Cs 2 NaBiI 6 double perovskite film for enhanced photovoltaic performance. Phys Status Solidi. 2019; 216:1900567. doi:10.1002/pssa.201900567
- 12Jain SM, Edvinsson T, Durrant JR. Green fabrication of stable lead-free bismuth based perovskite solar cells using a non-toxic solvent. Commun Chem. 2019; 2: 91. doi:10.1038/s42004-019-0195-3
- 13Chu L, Ahmad W, Liu W, et al. Lead-free halide double perovskite materials: a new superstar toward green and stable optoelectronic applications. Nano-Micro Lett. 2019; 11: 16. doi:10.1007/s40820-019-0244-6
- 14Wang X, Zhang T, Lou Y, Zhao Y. All-inorganic lead-free perovskites for optoelectronic applications. Mater Chem Front. 2019; 3: 365-375. doi:10.1039/C8QM00611C
- 15Wu C, Zhang Q, Liu Y, et al. The Dawn of Lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr6 film. Adv Sci. 2018; 5:1700759. doi:10.1002/advs.201700759
10.1002/advs.201700759 Google Scholar
- 16Li J, Meng X, Wu Z, et al. Pinning bromide ion with ionic liquid in lead-free Cs2 AgBiBr 6 double perovskite solar cells. Adv Funct Mater. 2022;2112991. doi:10.1002/adfm.202112991
- 17Filip MR, Hillman S, Haghighirad AA, Snaith HJ, Giustino F. Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment. J Phys Chem Lett. 2016; 7: 2579-2585. doi:10.1021/acs.jpclett.6b01041
- 18Greul E, Petrus ML, Binek A, Docampo P, Bein T. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J Mater Chem A. 2017; 5: 19972-19981. doi:10.1039/C7TA06816F
- 19Ghasemi M, Zhang L, Yun J, et al. Dual-ion-diffusion induced degradation in lead-free Cs2AgBiBr6 double perovskite solar cells. Adv Funct Mater. 2020; 30:2002342. doi:10.1002/adfm.202002342
- 20Hoye RLZ, Eyre L, Wei F, et al. Fundamental carrier lifetime exceeding 1 μs in Cs2AgBiBr6 double perovskite. Adv Mater Interfaces. 2018; 5:1800464. doi:10.1002/admi.201800464
- 21Yang X, Chen Y, Liu P, et al. Simultaneous power conversion efficiency and stability enhancement of Cs2AgBiBr6 lead-free inorganic perovskite solar cell through adopting a multifunctional dye interlayer. Adv Funct Mater. 2020; 30:2001557. doi:10.1002/adfm.202001557
- 22Li J, Yan F, Yang P, Duan Y, Duan J, Tang Q. Suppressing interfacial shunt loss via functional polymer for performance improvement of lead-free Cs2AgBiBr6 double perovskite solar cells. Sol RRL. 2022; 6:2100791. doi:10.1002/solr.202100791
- 23Savory CN, Walsh A, Scanlon DO. Can Pb-free halide double perovskites support high-efficiency solar cells? ACS Energy Lett. 2016; 1: 949-955. doi:10.1021/acsenergylett.6b00471
- 24Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964; 136: B864-B871. doi:10.1103/PhysRev.136.B864
- 25Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965; 140: A1133-A1138. doi:10.1103/PhysRev.140.A1133
- 26Peter Blaha LM, Schwarz K, Madsen GKH, et al. WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Techn. Universitat. 2019.
- 27Kumar S, Kumar N, Yadav K, Kumar A, Singh RP. DFT investigations on optoelectronic spectra and thermoelectric properties of barium cadmium disulphide (BaCdS2). Optik. 2020; 207:163797. doi:10.1016/j.ijleo.2019.163797
- 28Kumar A, Kumar M, Singh RP, Singh PK. Opto-electronic, magnetic, thermodynamic and thermoelectric properties of cubic perovskite SrMnO3: a first principle based spin polarized calculation. Solid State Commun. 2021; 324:114139. doi:10.1016/j.ssc.2020.114139
- 29Kumar M, Raj A, Kumar A, et al. Structural, electronic, magnetic and optical properties of double perovskite Nd2CoMnO6: first principle calculation. Optik. 2021; 242:166764. doi:10.1016/j.ijleo.2021.166764
- 30Kumar A, Swati M, Kumar RPS. Effect of spin orbit coupling on opto-electronic and magnetic properties of full Heusler alloy, Ru2CrAl for spintronic and optical devices: theoretical investigations using DFT. Optik. 2022; 249:168250. doi:10.1016/j.ijleo.2021.168250
- 31Et-taya L, Ouslimane T, Benami A. Numerical analysis of earth-abundant Cu2ZnSn(SxSe1−x)4 solar cells based on spectroscopic Ellipsometry results by using SCAPS-1D. Sol Energy. 2020; 201: 827-835. doi:10.1016/j.solener.2020.03.070
- 32Benami A. Effect of CZTS parameters on photovoltaic solar cell from numerical simulation. J Energy Power Eng. 2019; 13: 32-36. doi:10.17265/1934-8975/2019.01.003
- 33Rai S, Pandey BK, Dwivedi DK. Modeling of highly efficient and low cost CH3NH3Pb(I1−xClx)3 based perovskite solar cell by numerical simulation. Opt Mater. 2020; 100:109631. doi:10.1016/j.optmat.2019.109631
- 34Anwar F, Mahbub R, Satter SS, Ullah SM. Effect of different HTM layers and electrical parameters on ZnO nanorod-based lead-free perovskite solar cell for high-efficiency performance. Int J Photoenergy. 2017; 2017: 1-9. doi:10.1155/2017/9846310
- 35Islam MT, Jani MR, Al Amin SM, et al. Numerical simulation studies of a fully inorganic Cs2AgBiBr6 perovskite solar device. Opt Mater. 2020; 105:109957. doi:10.1016/j.optmat.2020.109957
- 36Walkons C, Murshed R, Bansal S. Numerical analysis of Pb-free perovskite absorber materials: prospects and challenges. Sol RRL. 2020; 4:2000299. doi:10.1002/solr.202000299
- 37Sariful Sheikh M, Ghosh D, Dutta A, Bhattacharyya S, Sinha TP. Lead free double perovskite oxides ln2NiMnO6 (ln = La, Eu, Dy, Lu), a new promising material for photovoltaic application. Mater Sci Eng B. 2017; 226: 10-17. doi:10.1016/j.mseb.2017.08.027
- 38Kanoun A-A, Kanoun MB, Merad AE, Goumri-Said S. Toward development of high-performance perovskite solar cells based on CH3NH3GeI3 using computational approach. Sol Energy. 2019; 182: 237-244. doi:10.1016/j.solener.2019.02.041
- 39Abdelaziz S, Zekry A, Shaker A, Abouelatta M. Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt Mater. 2020; 101:109738. doi:10.1016/j.optmat.2020.109738
- 40Karimi E, Ghorashi SMB. Investigation of the influence of different hole-transporting materials on the performance of perovskite solar cells. Optik. 2017; 130: 650-658. doi:10.1016/j.ijleo.2016.10.122
- 41Subbiah AS, Halder A, Ghosh S, Mahuli N, Hodes G, Sarkar SK. Inorganic hole conducting layers for perovskite-based solar cells. J Phys Chem Lett. 2014; 5: 1748-1753. doi:10.1021/jz500645n
- 42Haider SZ, Anwar H, Wang M. A comprehensive device modelling of perovskite solar cell with inorganic copper iodide as hole transport material. Semicond Sci Technol. 2018; 33:035001. doi:10.1088/1361-6641/aaa596
- 43Michaelson HB. The work function of the elements and its periodicity. J Appl Phys. 1977; 48: 4729-4733. doi:10.1063/1.323539
- 44Minemoto T, Murata M. Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation. Curr Appl Phys. 2014; 14: 1428-1433. doi:10.1016/j.cap.2014.08.002
- 45Murnaghan FD. The compressibility of media under extreme pressures. Proc Natl Acad Sci. 1944; 30: 244-247. doi:10.1073/pnas.30.9.244
- 46Li Z, Kavanagh SR, Napari M, et al. Bandgap lowering in mixed alloys of Cs2Ag(SbxBi1−x)Br6 double perovskite thin films. J Mater Chem A. 2020; 8: 21780-21788. doi:10.1039/D0TA07145E
- 47Huang Y-T, Kavanagh SR, Scanlon DO, Walsh A, Hoye RLZ. Perovskite-inspired materials for photovoltaics and beyond—from design to devices. Nanotechnology. 2021; 32:132004. doi:10.1088/1361-6528/abcf6d
- 48Du K, Meng W, Wang X, Yan Y, Mitzi DB. Bandgap engineering of lead-free double perovskite Cs2AgBiBr6 through trivalent metal alloying. Angew Chem Int Ed. 2017; 56: 8158-8162. doi:10.1002/anie.201703970
- 49Penn DR. Wave-number-dependent dielectric function of semiconductors. Phys Rev. 1962; 128: 2093-2097. doi:10.1103/PhysRev.128.2093
- 50Houck DW, Siegler TD, Korgel BA. Predictive modeling of CuInSe2 nanocrystal photovoltaics: the importance of band alignment and carrier diffusion. ACS Appl Energy Mater. 2019; 2: 1494-1504. doi:10.1021/acsaem.8b02090
- 51Kumar M, Raj A, Kumar A, Anshul A. Effect of band-gap tuning on lead-free double perovskite heterostructure devices for photovoltaic applications via SCAPS simulation. Mater Today Commun. 2021; 26:101851. doi:10.1016/j.mtcomm.2020.101851
- 52Nechache R, Harnagea C, Li S, et al. Bandgap tuning of multiferroic oxide solar cells. Nat Photonics. 2015; 9: 61-67. doi:10.1038/nphoton.2014.255
- 53Ummadisingu A, Meloni S, Mattoni A, Tress W, Grätzel M. Crystal-size-induced band gap tuning in perovskite films. Angew Chem Int Ed. 2021; 133: 21538-21546. doi:10.1002/ange.202106394
10.1002/ange.202106394 Google Scholar
- 54Jamal MS, Shahahmadi SA, Abdul Wadi MA, et al. Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation. Optik. 2019; 182: 1204-1210. doi:10.1016/j.ijleo.2018.12.163
- 55Ng A, Ren Z, Shen Q, et al. Crystal engineering for low defect density and high efficiency hybrid chemical vapor deposition grown perovskite solar cells. ACS Appl Mater Interfaces. 2016; 8: 32805-32814. doi:10.1021/acsami.6b07513
- 56Samiee M, Konduri S, Ganapathy B, et al. Defect density and dielectric constant in perovskite solar cells. Appl Phys Lett. 2014; 105:153502. doi:10.1063/1.4897329
- 57Chowdhury MS, Shahahmadi SA, Chelvanathan P, et al. Effect of deep-level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS-1D. Res Phys. 2020; 16:102839. doi:10.1016/j.rinp.2019.102839
10.1016/j.rinp.2019.102839 Google Scholar
- 58Patel PK. Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell. Sci Rep. 2021; 11: 3082. doi:10.1038/s41598-021-82817-w
- 59Behrouznejad F, Shahbazi S, Taghavinia N, Wu H-P, Wei-Guang Diau E. A study on utilizing different metals as the back contact of CH3NH3PbI3 perovskite solar cells. J Mater Chem A. 2016; 4: 13488-13498. doi:10.1039/C6TA05938D
- 60Rong X, Tian H, Bi W, et al. Impact of metal electrode work function of CH3NH3PbI3/p-Si planar heterojunction perovskite solar cells. Sol Energy. 2017; 158: 424-431. doi:10.1016/j.solener.2017.08.050
- 61Singh N, Agarwal A, Agarwal M. Numerical simulation of highly efficient lead-free all-perovskite tandem solar cell. Sol Energy. 2020; 208: 399-410. doi:10.1016/j.solener.2020.08.003
- 62Sobayel K, Akhtaruzzaman M, Rahman KS, et al. A comprehensive defect study of tungsten disulfide (WS2) as electron transport layer in perovskite solar cells by numerical simulation. Res Phys. 2019; 12: 1097-1103. doi:10.1016/j.rinp.2018.12.049
10.1016/j.rinp.2018.12.049 Google Scholar
- 63Tress W, Domanski K, Carlsen B, et al. Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nat Energy. 2019; 4: 568-574. doi:10.1038/s41560-019-0400-8
- 64Chakraborty K, Choudhury MG, Paul S. Numerical study of Cs2TiX6 (X = Br−, I−, F− and Cl−) based perovskite solar cell using SCAPS-1D device simulation. Sol Energy. 2019; 194: 886-892. doi:10.1016/j.solener.2019.11.005
- 65Minemoto T, Kawano Y, Nishimura T, et al. Theoretical analysis of band alignment at back junction in Sn–Ge perovskite solar cells with inverted p-i-n structure. Sol Energy Mater Sol Cells. 2020; 206:110268. doi:10.1016/j.solmat.2019.110268
- 66Madan J, Shivani R, Pandey RS. Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell. Sol Energy. 2020; 197: 212-221. doi:10.1016/j.solener.2020.01.006
- 67Azri F, Meftah AA, Sengouga N, Meftah AA. Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol Energy. 2019; 181: 372-378. doi:10.1016/j.solener.2019.02.017
- 68Raj A, Kumar M, Singh PK, et al. A computational approach to investigate the suitable ETL for lead-free CsGeI3 based perovskite solar cell. Mater Today Proc. 2021; 47: 1564-1569. doi:10.1016/j.matpr.2021.03.610
- 69Xu R, Wang Z, Xu W, et al. Dual–functional-polymer dopant–passivant boosted electron transport layer for high-performance inverted perovskite solar cells. Sol RRL. 2021; 5: 2100236. doi:10.1002/solr.202100236
- 70Xu C, Zhang Y, Luo P, et al. Comparative study on TiO2 and C 60 electron transport layers for efficient perovskite solar cells. ACS Appl Energy Mater. 2021; 4: 5543-5553. doi:10.1021/acsaem.1c00226