Biodiesel from waste oil under mild conditions by a combination of calcium-strontium oxide nanocatalyst and ultrasonic waves
Narjes Shahraini
Sonochemical Research Center, Environmental Chemistry Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
Search for more papers by this authorCorresponding Author
Mohammad H. Entezari
Sonochemical Research Center, Environmental Chemistry Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
Correspondence
Mohammad H. Entezari, Sonochemical Research Center, Environmental Chemistry Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
Email: [email protected]
Search for more papers by this authorNarjes Shahraini
Sonochemical Research Center, Environmental Chemistry Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
Search for more papers by this authorCorresponding Author
Mohammad H. Entezari
Sonochemical Research Center, Environmental Chemistry Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
Correspondence
Mohammad H. Entezari, Sonochemical Research Center, Environmental Chemistry Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
Email: [email protected]
Search for more papers by this authorFunding information: Ferdowsi University of Mashhad (Research and Technology), Grant/Award Number: 3/46318
Summary
The transesterification of waste oils to biodiesel was carried out in the presence and absence of ultrasound. A new nanocatalyst of the calcium-strontium oxide was applied with high catalytic activity. The innovation of this work is an environmentally friendly synthesized nanocatalyst with ultrasound at low temperatures. After synthesis, the nanocatalyst was characterized with FESEM, FT-IR, and CO2-TPD, NH3-TPD. It was mesoporous and showed great basicity by the CO2-TPD method. The highest conversion of biodiesel was 99.2% under optimal reaction conditions (2.5 wt% nanocatalyst, oil to methanol molar ratio 1:6, time 40 minutes, temperature 35°C, and 42% amplitude of ultrasound). 1HNMR, FTIR, and GC-FID tracked the characterization of biodiesel. The physical and fuel properties of biodiesel were evaluated according to the ASTM standardized method. Based on a kinetic study, the activation energy in the mechanical agitation method was about twice as high as in the ultrasonic method. A high turnover frequency and low environmental factors indicate that biodiesel synthesis from waste oil with this nanocatalyst is fast, efficient, and effective in the environment. Biodiesel was synthesized using calcium-strontium oxide nanocatalyst, waste oil, and ultrasonic in a green and eco-friendly process with time and cost savings.
Highlights
- Calcium-strontium oxide is a novel super base nanocatalyst synthesized for transesterification.
- The highest biodiesel yield achieves 99.2 wt% from this green synthesis with a low E-factor.
- The reaction followed the pseudo-first-order kinetics model.
- The turnover frequency of nanocatalyst is suitable for an industrial application.
- The calcium strontium oxide has proper reusability up to the six-run.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
er8098-sup-0001-Supinfo.docWord document, 979.2 KB | Figure S1. Experimental procedure for the synthesis of Ca1−xSrxOy Figure S2. XRD pattern of synthesized nanoparticle: Ca1−x Srx Oy(*), SrO2 (#).Figure S3. Effect of catalyst reusability. Figure S4. Schematic of the process of waste oil derivation for use in GC-FID. Figure S5. The kinetic plot, –ln (1 − X) vs Time (min) (a) MS method, (b) US method. Figure S6. Arrhenius plot lnk vs 1/T in K−1. Table S1. Free Fatty Acids (FFAs) compositional profile obtained by GC-FID for derived waste oil and biodiesel. Table S2. Condition for calculating TOF in both Method |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Ugochukwu GC, Eneh FU, Adindu CS, Ojiako OA, Aloh CH, Enemoh CG. Characterization of Biodiesel produced from waste cooking oil obtained from food vendors within Awka Metropolis. Front Sci. 2017; 7(3): 42-45. doi:10.5923/j.fs.20170703.02
10.5923/j.fs.20170703.02 Google Scholar
- 2Nizami A, Rehan M. Towards nanotechnology-based biofuel industry. Biofuel Res J. 2018; 18: 798-799. 10.18331/BRJ2018.5.2.2
- 3Reddy ANR, Saleh AA, Islam MS, Hamdan S. Optimization of transesterification parameters for optimal biodiesel yield from crude jatropha oil using a newly synthesized seashell catalyst. J Eng Sci Technol. 2017; 12(10): 2723-2732.
- 4Almasi S, Ghobadian B, Najafi GH, Yusaf T, Soufi MD, Hoseini SS. Optimization of an ultrasonic-assisted biodiesel production process from one genotype of rapeseed (Teri (OE) R-983) as a novel feedstock using response surface methodology. Energies. 2019; 12(14): 2656. doi:10.3390/en12142656
- 5Paul S, Bhagobaty RK, Nihalani MC, Joshi SR. Characterization of oleaginous endophytic fungi of biodiesel plants as potential biofuel minifactories. Biomass Bioenergy. 2020; 142:105750. doi:10.1016/j.biombioe.2020.105750
- 6Halek F, Aghamohammadi N, Mohamadi F. Biodiesel production from waste edible oil with heterogeneous catalysts (nanoclay-based nanocatalysts). Arab J Sci Eng. 2019; 44(12): 9919-9924. doi:10.1007/s13369-019-03986-5
- 7Juan JC, Kartika DA, Wu TY, Hin TYY. Biodiesel production from jatropha oil by catalytic and non-catalytic approaches: an overview. Bioresour Technol. 2011; 102(2): 452-460. doi:10.1016/j.biortech.2010.09.093
- 8Hoseini SS, Najafi G, Ghobadian B, Mamat R, Ebadi MT, Yusaf T. Novel environmentally friendly fuel: the effects of nanographene oxide additives on the performance and emission characteristics of diesel engines fuelled with Ailanthus altissima biodiesel. Renew Energy. 2018; 125: 283-294. doi:10.1016/j.renene.2018.02.104
- 9Mapossa AB, Dantas J, Costa ACFM. Transesterification reaction for biodiesel production from soybean oil using Ni0.5Zn0.5Fe2O4 nanomagnetic catalyst: kinetic study. Int J Energy Res. 2020; 44(8): 6674-6684. doi:10.1002/er.5403
- 10Munir M, Ahmad M, Mubashir M, et al. A practical approach for synthesis of biodiesel via non-edible seeds oils using trimetallic based montmorillonite nano-catalyst. Bioresour Technol. 2021; 328:124859. doi:10.1016/j.biortech.2021.124859
- 11Dawood S, Ahmad M, Zafar M, et al. Biodiesel synthesis from Prunus bokhariensis non-edible seed oil by using green silver oxide nanocatalyst. Chemosphere. 2022; 291:132780. doi:10.1016/j.chemosphere.2021.132780
- 12Leong WH, Saman NAM, Kiatkittipong W, et al. Photoperiod-induced mixotrophic metabolism in Chlorella vulgaris for high biomass and lipid to biodiesel productions using municipal wastewater medium. Fuel. 2022; 313:123052. doi:10.1016/j.fuel.2021.123052
- 13Nawaz S, Ahmad M, Asif S, et al. Phyllosilicate derived catalysts for efficient conversion of lignocellulosic derived biomass to biodiesel: a review. Bioresour Technol. 2022; 343:126068. doi:10.1016/j.biortech.2021.126068
- 14Leong WH, Kiatkittipong W, Lam MK, et al. Dual nutrient heterogeneity modes in a continuous flow photobioreactor for optimum nitrogen assimilation to produce microalgal biodiesel. Renew Energy. 2022; 184: 443-451. doi:10.1016/j.renene.2021.11.117
- 15Mishra VK, Goswami RA. Review of production. Propert Adv Biodiesel Biofuel. 2017; 0(0): 1-17. doi:10.1080/17597269.2017.1336350
- 16Panadare DC, Rathod VK. Applications of waste cooking oil other than biodiesel: a review. Iran J Chem Eng. 2015; 12(3): 55-76.
- 17Sarno M, Iuliano M. Self-dual leonard pairs biodiesel production from waste cooking oil A. Green Process Synth. 2019; 8: 828-836.
- 18Nguyenthi TX, Bazile JP, Bessières D. Density measurements of waste cooking oil biodiesel and diesel blends over extended pressure and temperature ranges. Energies. 2018; 11(5): 1212. doi:10.3390/en11051212
- 19Patil PD, Gude VG, Reddy HK, Muppaneni T, Deng S. Biodiesel production from waste cooking oil using sulfuric acid and microwave irradiation processes. J Environ Prot. 2012; 03(1): 107-113. doi:10.4236/jep.2012.31013
- 20Xie W, Yang D. Transesterification of soybean oil over WO3 supported on AlPO4 as a solid acid catalyst. Bioresour Technol. 2012; 119: 60-65. doi:10.1016/j.biortech.2012.05.110
- 21Rahman NJA, Ramli A, Jumbri K, Uemura Y. Tailoring the surface area and the acid–base properties of ZrO2 for biodiesel production from Nannochloropsis Sp. Sci Rep. 2019; 9(1): 1-12. doi:10.1038/s41598-019-52771-9
- 22Borah MJ, Devi A, Saikia RA, Deka D. Biodiesel production from waste cooking oil catalyzed by in-situ decorated TiO2 on reduced graphene oxide nanocomposite. Energy. 2018; 158: 881-889. doi:10.1016/j.energy.2018.06.079
- 23Bohlouli A, Mahdavian L. Catalysts used in biodiesel production: a review. Biofuels. 2019; 12(8): 885-898. doi:10.1080/17597269.2018.1558836
- 24Aslan V, Eryilmaz T. Polynomial regression method for optimization of biodiesel production from black mustard (Brassica nigra L.) seed oil using methanol, ethanol, NaOH, and KOH. Energy. 2020; 209:118386. doi:10.1016/j.energy.2020.118386
- 25Yang X, Wang Y, Yang Y, et al. Catalytic transesteri Fi cation to biodiesel at room temperature over several solid bases. Energy Convers Manag. 2018; 164: 112-121. doi:10.1016/j.enconman.2018.02.085
- 26Lokman M, Nur N, Nik A, et al. Preparation of Na2O supported CNTs nanocatalyst for efficient biodiesel production from waste-oil. Energy Conver Manag. 2020; 205:112445. doi:10.1016/j.enconman.2019.112445
- 27Seffati K, Esmaeili H, Honarvar B, Esfandiari N. AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat. Renew Energy. 2020; 147: 25-34. doi:10.1016/j.renene.2019.08.105
- 28Li Z, Niu S, Han K, et al. Investigation into influences of methanol pre-adsorption on CaO(100) surface in transesterification for biodiesel production with molecular simulation. Appl Catal A Gen. 2021; 609:117908. doi:10.1016/j.apcata.2020.117908
- 29Dantas J, Leal E, Mapossa AB, et al. Biodiesel production on bench scale from different sources of waste oils by using NiZn magnetic heterogeneous nanocatalyst. Int J Energy Res. 2021; 45(7): 10924, 10.1002/er.6577-10945.
- 30Sharma S, Saxena V, Baranwal A, Chandra P, Pandey LM. Engineered nanoporous materials mediated heterogeneous catalysts and their implications in biodiesel production. Mater Sci Energy Technol. 2018; 1: 11-21. doi:10.1016/j.mset.2018.05.002
10.1016/j.mset.2018.05.002 Google Scholar
- 31Waghmare GV, Rathod VK. Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition. Ultrason Sonochem. 2016; 32: 60-67. doi:10.1016/j.ultsonch.2016.01.033
- 32Malani RS, Umriwad SB, Kumar K, Goyal A. Ultrasound – assisted enzymatic biodiesel production using blended feedstock of non – edible oils: kinetic analysis. Energy Convers Manag. 2019; 188: 142-150. doi:10.1016/j.enconman.2019.03.052
- 33Avhad MR, Marchetti JM. Innovation in solid heterogeneous catalysis for the generation of economically viable and ecofriendly biodiesel: a review. Catal Rev - Sci Eng. 2016; 58(2): 157-208. doi:10.1080/01614940.2015.1103594
- 34Lourinho G, Brito P. Advanced biodiesel production technologies: novel developments. Rev Environ Sci Biotechnol. 2015; 14(2): 287-316. doi:10.1007/s11157-014-9359-x
- 35Leung DYC, Wu X, Leung MKH. A review on biodiesel production using catalyzed transesterification. Appl Energy. 2010; 87(4): 1083-1095. doi:10.1016/j.apenergy.2009.10.006
- 36Shahraki H, Entezari MH, Goharshadi EK. Sono-synthesis of biodiesel from soybean oil by KF/γ-Al2O3 as a nano-solid-base catalyst. Ultrason Sonochem. 2015; 23: 266-274. doi:10.1016/j.ultsonch.2014.09.010
- 37Micic RD, Bosnjak Kiralj MS, Panic SN, Tomic M, Jovic BD, Boskovic GC. Activation temperature imposed textural and surface synergism of CaO catalyst for sunflower oil transesterification. Fuel. 2015; 159: 638-645. doi:10.1016/j.fuel.2015.07.025
- 38Degfie TA, Mamo TT, Mekonnen YS. Optimized biodiesel production from waste cooking oil (WCO) using calcium oxide (CaO) nano-catalyst. Sci Rep. 2019; 9(1): 1-8. doi:10.1038/s41598-019-55403-4
- 39Odetoye TE, Agu JO, Ajala EO. Biodiesel production from poultry wastes: waste chicken fat and eggshell. J Environ Chem Eng. 2021; 9(4):105654. doi:10.1016/j.jece.2021.105654
- 40Badnore AU, Jadhav NL, Pinjari DV, Pandit AB. Efficacy of newly developed nano-crystalline calcium oxide catalyst for biodiesel production. Chem Eng Process - Process Intensif. 2018; 133: 312-319. doi:10.1016/j.cep.2018.09.007
- 41Lin YC, Amesho KTT, Chen CE, Cheng PC, Chou FC. A cleaner process for green biodiesel synthesis from waste cooking oil using recycled waste oyster shells as a sustainable base heterogeneous catalyst under the microwave heating system. Sustain Chem Pharm. 2020; 17:100310. doi:10.1016/j.scp.2020.100310
- 42Mierczynski P, Ciesielski R, Kedziora A, et al. Biodiesel production on MgO, CaO, SrO and BaO oxides supported on (SrO)(Al2O3) mixed oxide. Catal Lett. 2015; 145(5): 1196-1205. doi:10.1007/s10562-015-1503-x
- 43Singh V, Yadav M, Sharma YC. Effect of Co-solvent on biodiesel production using calcium aluminium oxide as a reusable catalyst and waste vegetable oil. Fuel. 2017; 203: 360-369. doi:10.1016/j.fuel.2017.04.111
- 44Yahya NY, Ngadi N, Wong S, Hassan O. Transesterification of used cooking oil (UCO) catalyzed by mesoporous calcium titanate: kinetic and thermodynamic studies. Energy Convers Manag. 2018; 164: 210-218. doi:10.1016/j.enconman.2018.03.011
- 45Zhang Y, Niu S, Han K, Li Y, Lu C. Synthesis of the SrO–CaO–Al2O3 trimetallic oxide catalyst for transesterification to produce biodiesel. Renew Energy. 2021; 168: 981-990. doi:10.1016/j.renene.2020.12.132
- 46Çakırca EE, Akın AN. Study on heterogeneous catalysts from calcined Ca riched hydrotalcite like compounds for biodiesel production. Sustain Chem Pharm. 2021; 20:100378. doi:10.1016/j.scp.2021.100378
- 47Naveenkumar R, Baskar G. Biodiesel production from calophyllum inophyllum oil using zinc doped calcium oxide (plaster of Paris) nanocatalyst. Bioresour Technol. 2019; 280: 493-496. doi:10.1016/j.biortech.2019.02.078
- 48Li H, Niu S, Lu C, Li J. Calcium oxide functionalized with strontium as heterogeneous transesterification catalyst for biodiesel production. FUEL. 2016; 176: 63-71. doi:10.1016/j.fuel.2016.02.067
- 49Ali SD, Javed BIN, Rana CUA, Nazar M, Fahmed HW, Junaid FA. Novel SrO-CaO mixed metal oxides catalyst for ultrasonic-assisted transesterification of jatropha oil into biodiesel. Aust J Chem. 2017; 70(3): 258-264. doi:10.1071/CH16236
- 50Shahbazi F, Mahdavi V, Zolgharnein J. Preparation and characterization of SrO/MgO nanocomposite as a novel and efficient base catalyst for biodiesel production from waste cooking oil: a statistical approach for optimization. J Iran Chem Soc. 2020; 17(2): 333-349. doi:10.1007/s13738-019-01772-6
- 51Gole VL, Gogate PR. A review on intensification of synthesis of biodiesel from sustainable feed stock using sonochemical reactors. Chem Eng Process Process Intensif. 2012; 53: 1-9. doi:10.1016/j.cep.2011.12.008
- 52Dubey SM, Gole VL, Gogate PR. Ultrasonics sonochemistry cavitation assisted synthesis of fatty acid methyl esters from sustainable feedstock in presence of heterogeneous catalyst using two step process. UltrasonSonochem. 2015; 23: 165-173. doi:10.1016/j.ultsonch.2014.08.019
- 53Choudhury HA, Chakma S, Moholkar VS. Mechanistic insight into sonochemical biodiesel synthesis using heterogeneous base catalyst. Ultrason Sonochem. 2014; 21(1): 169-181. doi:10.1016/j.ultsonch.2013.04.010
- 54Gholami A, Hajinezhad A, Pourfayaz F, Ahmadi MH. The effect of hydrodynamic and ultrasonic cavitation on biodiesel production: an exergy analysis approach. Energy. 2018; 160: 478-489. doi:10.1016/j.energy.2018.07.008
- 55Bet-Moushoul E, Farhadi K, Mansourpanah Y, Nikbakht AM, Molaei R, Forough M. Application of CaO-based/Au nanoparticles as heterogeneous nanocatalysts in biodiesel production. Fuel. 2016; 164: 119-127. doi:10.1016/j.fuel.2015.09.067
- 56Zhang P, Chang Z, Wang D. Effect of water content on product distribution of base-catalyzed transesterification. Waste Biomass Valoriz. 2017; 8(1): 95-102. doi:10.1007/s12649-016-9584-3
- 57Aricetti JA, Tubino M. A visual titration method for the determination of the acid number of oils and fats: a green alternative. J Am Oil Chem Soc. 2012; 89(11): 2113-2115. doi:10.1007/s11746-012-2111-1
- 58Aggarwal JK, Arora R, Kaushik D. Two step biodiesel production from high free fatty acid spent bleaching earth. Int J Mech Product Eng. 2018; 6: 24-27.
- 59Skala D. Calcium oxide based catalysts for biodiesel production: a review. Chem Ind Chem Eng. 2016; 22(4): 391-408. doi:10.2298/CICEQ160203010K
- 60Song Z, Jin X, Hu Y, Subramaniam B, Chaudhari RV. Intriguing catalyst (CaO) pretreatment effects and mechanistic insights during propylene carbonate transesterification with methanol. ACS Sustain Chem Eng. 2017; 5: 4718-4729. doi:10.1021/acssuschemeng.7b00095
- 61Apsana G, Pp G, Devanna N, Yuvasravana R. Biomimetic synthesis and antibacterial properties of strontium oxide nanoparticles using ocimum sanctum lesf extract. Asian J Pharm Clin Res. 2018; 11(3): 384-389.
10.22159/ajpcr.2018.v11i3.20858 Google Scholar
- 62Roy A, Bhattacharya J. Microwave-assisted synthesis and characterization of CaS nanoparticles. Int J Nanosci. 2012; 11(05):1250027. doi:10.1142/s0219581x12500275
10.1142/S0219581X12500275 Google Scholar
- 63Viriya-Empikul N, Krasae P, Nualpaeng W, Yoosuk B, Faungnawakij K. Biodiesel production over Ca-based solid catalysts derived from industrial wastes. Fuel. 2012; 92(1): 239-244. doi:10.1016/j.fuel.2011.07.013
- 64Hattori H. Heterogeneous basic catalysis. Chem Rev. 1995; 95: 537-550.
- 65Ruppert AM, Meeldijk JD, Kuipers BWM, Erné BH, Weckhuysen BM. Glycerol etherification over highly active CaO-based materials: new mechanistic aspects and related colloidal particle formation. Chem A Eur J. 2008; 14(7): 2016-2024. doi:10.1002/chem.200701757
- 66Correia LM, Saboya RMA, de Sousa CN, et al. Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil. Bioresour Technol. 2014; 151: 207-213. doi:10.1016/j.biortech.2013.10.046
- 67Juskelis MV, Slanga JP, Roberie TG, Peters AW. A comparison of CaO, beta, and a dealuminated Y by ammonia TPD and by temperature programmed 2-propylamine cracking. J Catal. 1992; 138(1): 391-394. doi:10.1016/0021-9517(92)90032-D
- 68Glazneva TS, Kotsarenko NS, Paukshtis EA. Surface acidity and basicity of oxide catalysts: from aqueous suspensions to in situ measurements. Kinet Catal. 2008; 49(6): 859-867. doi:10.1134/S0023158408060104
- 69Abedini R, Mousavi SM. Preparation and enhancing of materials using ultrasound technique: polymers, Catalysts Nano-Structure Particles. Pet Coal. 2010; 52(2): 81-98.
- 70Kouzu M, Hidaka JS. Purification to remove leached CaO catalyst from biodiesel with the help of cation-exchange resin. Fuel. 2013; 105: 318-324. doi:10.1016/j.fuel.2012.06.019
- 71Kumar G. Ultrasonic-assisted reactive-extraction is a fast and easy method for Gajendra Kumar reactive-extraction. Ultrason. Sonochem. 2017; 37: 634-639. doi:10.1016/j.ultsonch.2017.02.018
- 72Sajjadi B, Abdul Aziz AR, Ibrahim S. Mechanistic analysis of cavitation assisted transesterification on biodiesel characteristics. Ultrason Sonochem. 2015; 22: 463-473. doi:10.1016/j.ultsonch.2014.06.004
- 73Hingu SM, Gogate PR, Rathod VK. Synthesis of biodiesel from waste cooking oil using sonochemical reactors. Ultrason Sonochem. 2010; 17(5): 827-832. doi:10.1016/j.ultsonch.2010.02.010
- 74Knothe G. Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc. 2006; 83(10): 823-833. doi:10.1007/s11746-006-5033-y
- 75Killner MHM, Garro Linck Y, Danieli E, Rohwedder JJR, Blümich B. Compact NMR spectroscopy for real-time monitoring of a biodiesel production. Fuel. 2015; 139: 240-247. doi:10.1016/j.fuel.2014.08.050
- 76Roschat W, Siritanon T, Yoosuk B, Promarak V. Biodiesel production from palm oil using hydrated lime-derived CaO as a low-cost basic heterogeneous catalyst. Energy Convers Manag. 2016; 108: 459-467. doi:10.1016/j.enconman.2015.11.036
- 77Foroutan R, Mohammadi R, Esmaeili H, Mirzaee Bektashi F, Tamjidi S. Transesterification of waste edible oils to biodiesel using calcium oxide@magnesium oxide nanocatalyst. Waste Manag. 2020; 105: 373-383. doi:10.1016/j.wasman.2020.02.032
- 78Zhang WB. Review on analysis of biodiesel with infrared spectroscopy. Renew Sustain Energy Rev. 2012; 16(8): 6048-6058. doi:10.1016/j.rser.2012.07.003
- 79Schumacher LG, Elser N. Sample analysis from biodiesel test sample analysis from biodiesel. Analysis. 1997; 108: 459-467.
- 80Wang J, Wu W, Wang X, Wang M, Wu F. An effective GC method for the determination of the fatty acid composition in silkworm pupae oil using a two-stepmethylation process. J Serbian Chem Soc. 2015; 80(1): 9-20. doi:10.2298/JSC140401073W
- 81Seppänen-Laakso T, Laakso I, Hiltunen R. Analysis of fatty acids by gas chromatography, and its relevance to research on health and nutrition. Anal Chim Acta. 2002; 465(1–2): 39-62. doi:10.1016/S0003-2670(02)00397-5
- 82Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob ADR. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel. 2012; 91(1): 102-111. doi:10.1016/j.fuel.2011.06.070
- 83Institute M. A biodiesel prier: market & public policy developments, quality standards & handling. Specialist. 2006; 14: 14.
- 84Rahman M, Rasul M, Hassan NS, Hyde J. Prospects of biodiesel production from macadamia oil as an alternative fuel for diesel engines. Energies. 2016; 9: 403. doi:10.3390/en9060403
- 85Monteiro MR, Ambrozin ARP, Lião LM, Ferreira AG. Critical review on analytical methods for biodiesel characterization. Talanta. 2008; 77(2): 593-605. doi:10.1016/j.talanta.2008.07.001
- 86Ghayal D, Pandit AB, Rathod VK. Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil. Ultrason Sonochem. 2013; 20(1): 322-328. doi:10.1016/j.ultsonch.2012.07.009
- 87Encinar JM, Pardal A, Sánchez N, Nogales S. Biodiesel by transesterification of rapeseed oil using ultrasound: a kinetic study of base-catalysed reactions. Energies. 2018; 11(9): 2229. doi:10.3390/en11092229
- 88Moholkar VS, Choudhury HA, Singh S, et al. Physical and chemical mechanisms of ultrasound in biofuel synthesis. In: Z Fang, R Smith, X Qi, eds. Production of biofuels and chemicals with ultrasound. biofuels and biorefineries, vol. 4. Dordrecht: Springer; 2015: 35-86. doi:10.1007/978-94-017-9624-8_2
10.1007/978-94-017-9624-8_2 Google Scholar
- 89Kalva A, Sivasankar T, Moholkar VS. Physical mechanism of ultrasound-assisted synthesis of biodiesel. Ind Eng Chem Res. 2009; 48(1): 534-544. doi:10.1021/ie800269g
- 90Hoque ME, Singh A, Chuan YL. Biodiesel from low cost feedstocks: the effects of process parameters on the biodiesel yield. Biomass Bioenergy. 2011; 35(4): 1582-1587. doi:10.1016/j.biombioe.2010.12.024
- 91Thanh LT, Okitsu K, Sadanaga Y, Takenaka N, Maeda Y, Bandow H. Ultrasound-assisted production of biodiesel fuel from vegetable oils in a small scale circulation process. Bioresour Technol. 2010; 101(2): 639-645. doi:10.1016/j.biortech.2009.08.050
- 92Martinez-Guerra E, Gude VG. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol-methanol mixtures. Waste Manag. 2014; 34(12): 2611-2620. doi:10.1016/j.wasman.2014.07.023
- 93Gebremariam SN, Marchetti JM. Biodiesel production technologies: review. AIMS Energy. 2017; 5: 425-457. doi:10.3934/energy.2017.3.425
- 94Viriya-empikul N, Krasae P, Puttasawat B, Yoosuk B, Chollacoop N, Faungnawakij K. Waste shells of mollusk and egg as biodiesel production catalysts. Bioresour Technol. 2010; 101(10): 3765-3767. doi:10.1016/j.biortech.2009.12.079
- 95Chen CL, Huang CC, Tran DT, Chang JS. Biodiesel synthesis via heterogeneous catalysis using modified strontium oxides as the catalysts. Bioresour Technol. 2012; 113: 8-13. doi:10.1016/j.biortech.2011.12.142
- 96Zul NA, Ganesan S, Hamidon TS, Oh WD, Hussin MH. A review on the utilization of calcium oxide as a base catalyst in biodiesel production. J Environ Chem Eng. 2021; 9(4):105741. doi:10.1016/j.jece.2021.105741
- 97Liu X, He H, Wang Y, Zhu S, Piao X. Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel. 2008; 87(2): 216-221. doi:10.1016/j.fuel.2007.04.013
- 98Tan YH, Abdullah MO, Nolasco-Hipolito C, Taufiq-Yap YH. Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: catalyst characterization and biodiesel yield performance. Appl Energy. 2015; 160: 58-70. doi:10.1016/j.apenergy.2015.09.023
- 99Farvardin M, Hosseinzadeh Samani B, Rostami S, Abbaszadeh-Mayvan A, Najafi G, Fayyazi E. Enhancement of biodiesel production from waste cooking oil: ultrasonic-hydrodynamic combined cavitation system. Energy Sourc Part A Recover Util Environ Eff. 2019; 1-15. doi:10.1080/15567036.2019.1657524
- 100Tan SX, Lim S, Ong HC, Pang YL. State of the art review on development of ultrasound-assisted catalytic transesterification process for biodiesel production. Fuel. 2019; 235: 886-907. doi:10.1016/j.fuel.2018.08.021
- 101Sahani S, Roy T, Sharma YC. Studies on fast and green biodiesel production from an indigenous non-edible Indian feedstock using single phase strontium titanate catalyst. Energy Convers Manag. 2020; 203:112180. doi:10.1016/j.enconman.2019.112180
- 102Waghmare GV, Rathod VK. Ultrasonics sonochemistry ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition. Ultrason Sonochem. 2016; 32: 60-67. doi:10.1016/j.ultsonch.2016.01.033
- 103Akhabue CE, Ewah OI. Optimization of transesterification of castor oil catalysed by calcium oxide derived from limestone: kinetics and thermodynamic studies. Niger J Sci Res. 2021; 20(1): 9-23.
- 104Zhu Z, Liu Y, Cong W, et al. Soybean biodiesel production using synergistic CaO/Ag nano catalyst: process optimization, kinetic study, and economic evaluation. Ind Crops Prod. 2021; 166(666):113479. doi:10.1016/j.indcrop.2021.113479
- 105Sharma A, Kodgire P, Kachhwaha SS. Biodiesel production from waste cotton-seed cooking oil using microwave-assisted transesterification: optimization and kinetic modeling. Renew Sustain Energy Rev. 2019; 116:109394. doi:10.1016/j.rser.2019.109394
- 106Roy T, Sahani S, Sharma YC. Green synthesis of biodiesel from ricinus communis oil (castor seed oil) using potassium promoted lanthanum oxide catalyst: kinetic, thermodynamic and environmental studies. Fuel. 2020; 274:117644. doi:10.1016/j.fuel.2020.117644
- 107Boudart M. Turnover rates in heterogeneous catalysis. Chem Rev. 1995; 95(3): 661-666. doi:10.1021/cr00035a009
- 108Roy T, Sahani S, Madhu D, Chandra SY. A clean approach of biodiesel production from waste cooking oil by using single phase BaSnO3 as solid base catalyst: mechanism, kinetics & e-study. J Clean Prod. 2020; 265:121440. doi:10.1016/j.jclepro.2020.121440
- 109Hagen J. Industrial catalysis: a practical approach. Third ed. Weinheim, Germany: WileyVCH Verlag GmbH & Co. KGaA; 2015: 1-16.
10.1002/9783527684625 Google Scholar