Optimal parameter estimation of solid oxide fuel cells model using bald eagle search optimizer
Amlak Abaza
Electrical Engineering Department, Faculty of Engineering, Kafr-Elsheikh University, Kafr el-Sheikh, Egypt
Search for more papers by this authorCorresponding Author
Ragab A. El Sehiemy
Electrical Engineering Department, Faculty of Engineering, Kafr-Elsheikh University, Kafr el-Sheikh, Egypt
Correspondence
Ragab A. El Sehiemy, Electrical Engineering Department, Faculty of Engineering, Kafr-Elsheikh University, Kafr el-Sheikh, Egypt.
Email: [email protected]
Search for more papers by this authorAttia El-Fergany
Electrical Power and Machines Department, Faculty of Engineering, Zagazig University, Zagazig, Egypt
Search for more papers by this authorAhmed Saeed Abdelrazek Bayoumi
Department of Engineering Physics and Mathematics, Faculty of Engineering, Kafr-Elsheikh University, Kafr el-Sheikh, Egypt
Search for more papers by this authorAmlak Abaza
Electrical Engineering Department, Faculty of Engineering, Kafr-Elsheikh University, Kafr el-Sheikh, Egypt
Search for more papers by this authorCorresponding Author
Ragab A. El Sehiemy
Electrical Engineering Department, Faculty of Engineering, Kafr-Elsheikh University, Kafr el-Sheikh, Egypt
Correspondence
Ragab A. El Sehiemy, Electrical Engineering Department, Faculty of Engineering, Kafr-Elsheikh University, Kafr el-Sheikh, Egypt.
Email: [email protected]
Search for more papers by this authorAttia El-Fergany
Electrical Power and Machines Department, Faculty of Engineering, Zagazig University, Zagazig, Egypt
Search for more papers by this authorAhmed Saeed Abdelrazek Bayoumi
Department of Engineering Physics and Mathematics, Faculty of Engineering, Kafr-Elsheikh University, Kafr el-Sheikh, Egypt
Search for more papers by this authorSummary
In this article, a new nature-inspired optimizer based on bald eagles' fish hunting behavior is proposed for accurate parameters estimation of the solid oxide fuel cells stack's model. The optimal estimated values of the seven control parameters are generated by the bald eagle search (BES) optimizer. These parameters have optimized the model of the solid oxide fuel cells stack and formulated it as an optimization problem with associated constraints. The employed BES optimizer is a flexible algorithm with a relatively large population size which effectively improves the optimization process and has the ability to be improved. The BES optimizer is smooth, rapid, and steady in the convergence process. The BES optimizer is a very simple algorithm that consists of three main stages which are selecting hunting space, searching in the hunting area, and swooping stage. The model of the stack is tested at four operating conditions at 3 bar and varied temperatures of 923/973/1023/1073 K. The BES optimizer leads to more accurate parameters with good convergences. The insignificant values of reported worst mean square errors of something around 4.7e-6 V2 points out the full conformity and coincidence between actual and estimated dataset voltage points. In addition to that, the efficacy of the BES optimizer is assured by comparing the results to parameters estimated from some recent techniques. The cropped estimated polarization curves, V-I and P-I, are very close to the measured datasets at various operating conditions. Statistics metrics indicate the robustness and the viability of the BES compared to other recent challenging optimizers.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1Shaheen AM, El-sehiemy RA, Elattar EE, Abd-elrazek AS. A modified crow search optimizer for solving non-linear OPF problem with emissions. IEEE Access. 2021; 9: 43107-43120. doi:10.1109/ACCESS.2021.3060710
- 2Rizk-Allah RM, El-Sehiemy RA, Wang GG. A novel parallel hurricane optimization algorithm for secure emission/economic load dispatch solution. Appl Soft Comput J. 2018; 63: 206-222. doi:10.1016/j.asoc.2017.12.002
- 3Wang GG, Tan Y. Improving metaheuristic algorithms with information feedback models. IEEE Trans. Cybern. 2019; 49(2):542-555. doi:10.1109/TCYB.2017.2780274
- 4El-Banna MM, Phillips AH, Bayoumi ASA. Ferromagnetic silicene superlattice based thermoelectric flexible renewable energy generator device. IEEE Access. 2021; 9: 103564-103572. doi:10.1109/access.2021.3098042
- 5El-Banna MM, Phillips AH, Bayoumi ASA. Spin-valley thermoelectric characteristics of ferromagnetic silicene superlattice. Ain Shams Eng J. 2021; no. xxxx: 2193-2203. doi:10.1016/j.asej.2021.01.002
- 6Abdelrazek AS, El-Banna MM, Phillips AH. Photon-spin coherent manipulation of piezotronic nanodevice. Micro Nano Lett. 2016; 11(12): 876-880. doi:10.1049/mnl.2016.0264
- 7Bayoumi AS, El-Sehiemy RA, Mahmoud K, Lehtonen M, Darwish MMF. Assessment of an improved three-diode against modified two-diode patterns of MCS solar cells associated with soft parameter estimation paradigms. Appl Sci. 2021; 11(3): 1-20. doi:10.3390/app11031055
- 8Ela AAAE, El-Sehiemy RA, Shaheen AM, Shalaby AS. Application of the crow search algorithm for economic environmental dispatch. 2017 19th International Middle-East Power Systems Conference, MEPCON 2017—Proceedings. Vol 2018-Febru; 2018: 78-83. Egypt: IEEE. doi:10.1109/MEPCON.2017.8301166
10.1109/MEPCON.2017.8301166 Google Scholar
- 9Shaheen AM, El-Sehiemy RA. Optimal allocation of capacitor devices on MV distribution networks using crow search algorithm. CIRED - Open Access Proc J. 2017; 2017(1): 2453-2457. doi:10.1049/oap-cired.2017.0020
10.1049/oap-cired.2017.0020 Google Scholar
- 10El-Sehiemy RA, Hamida MA, Mesbahi T. Parameter identification and state-of-charge estimation for lithium-polymer battery cells using enhanced sunflower optimization algorithm. Int. J. Hydrogen Energy. 2020; 45(15):8833-8842. doi:10.1016/j.ijhydene.2020.01.067
- 11Abdalla AM, Hossain S, Azad AT, et al. Nanomaterials for solid oxide fuel cells: a review. Renew Sustain Energy Rev. 2018; 82: 353-368. doi:10.1016/j.rser.2017.09.046
- 12Xu H, Chen B, Tan P, et al. Modeling of all porous solid oxide fuel cells. Appl Energy. 2018; 219: 105-113. doi:10.1016/j.apenergy.2018.03.037
- 13Abaza A, El Sehiemy RA, Bayoumi ASA. Optimal parameter estimation of solid oxide fuel cell model using coyote optimization algorithm. Recent Advances in Engineering Mathematics and Physics. Cairo: Springer; 2020.
10.1007/978-3-030-39847-7_10 Google Scholar
- 14Roshandel R, Golzar F, Astaneh M. Technical, economic and environmental optimization of combined heat and power systems based on solid oxide fuel cell for a greenhouse case study. Energ Conver Manage. 2018; 164: 144-156. doi:10.1016/j.enconman.2018.02.023
- 15Mantelli L, Ferrari ML, Traverso A. Dynamics and control of a turbocharged solid oxide fuel cell system. Appl Therm Eng. 2021; 191: 116862. doi:10.1016/j.applthermaleng.2021.116862
- 16Virkar A, Williams MC, Singhal S. Concepts for ultra-high power density solid oxide fuel cells. ECS Trans. 2007; 5(1):401. doi:10.1149/1.2729021
10.1149/1.2729021 Google Scholar
- 17Zhu L, Zhang L, Virkar AV. A parametric model for solid oxide fuel cells based on measurements made on cell materials and components. J Power Sources. 2015; 291: 138-155. doi:10.1016/j.jpowsour.2015.04.155
- 18Gong W, Cai Z, Yang J, Li X, Jian L. Parameter identification of an SOFC model with an efficient, adaptive differential evolution algorithm. Int J Hydrogen Energy. 2014; 39(10):5083-5096. doi:10.1016/j.ijhydene.2014.01.064
- 19Jiang B, Wang N, Wang L. Parameter identification for solid oxide fuel cells using cooperative barebone particle swarm optimization with hybrid learning. Int. J. Hydrogen Energy. 2014; 39(1), 532-542. doi:10.1016/j.ijhydene.2013.09.072
- 20 Ding, J., He, X., Jiang, B., Wu, Y. (2015). Parameter Identification for Area-Specific Resistance of Direct Methanol Fuel Cell Using Cuckoo Search Algorithm. In: Gong, M., Linqiang, P., Tao, S., Tang, K., Zhang, X. (Eds.), Bio-Inspired Computing – Theories and Applications. BIC-TA 2015. Communications in Computer and Information Science (vol. 562). Berlin, HD: Springer. doi:10.1007/978-3-662-49014-3_10
10.1007/978?3?662?49014?3_10 Google Scholar
- 21Yang J, Li X, Jiang JH, et al. Parameter optimization for tubular solid oxide fuel cell stack based on the dynamic model and an improved genetic algorithm. Int J Hydrogen Energy. 2011; 36(10): 6160-6174. doi:10.1016/j.ijhydene.2011.02.019
- 22Jiang J, Li X, Deng Z, Yang J, Zhang Y, Li J. Control-oriented dynamic model optimization of steam reformer with an improved optimization algorithm. Int. J. Hydrogen Energy. 2013; 38(26):11288-11302. doi:10.1016/j.ijhydene.2013.06.103
- 23Niu Q, Zhang L, Li K. A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells. Energ Conver Manage. 2014; 86: 1173-1185. doi:10.1016/j.enconman.2014.06.026
- 24Askarzadeh A, Coelho LDS. A backtracking search algorithm combined with Burger's chaotic map for parameter estimation of PEMFC electrochemical model. Int J Hydrogen Energy. 2014; 39(21): 11165-11174. doi:10.1016/j.ijhydene.2014.05.052
- 25El-Fergany AA. Extracting optimal parameters of PEM fuel cells using Salp swarm optimizer. Renew Energy. 2018; 119: 641-648. doi:10.1016/j.renene.2017.12.051
- 26El-Hay EA, El-Hameed MA, El-Fergany AA. Steady-state and dynamic models of solid oxide fuel cells based on satin bowerbird optimizer. Int. J. Hydrogen Energy. 2018; 43(31):14751-14761. doi:10.1016/j.ijhydene.2018.06.032
- 27Xiong G, Zhang J, Shi D, He Y. Parameter identification of solid oxide fuel cells with ranking teaching-learning based algorithm. Energ Conver Manage. 2018; 174: 126-137. doi:10.1016/j.enconman.2018.08.039
- 28Alsattar HA, Zaidan AA, Zaidan BB. Novel meta-heuristic bald eagle search optimisation algorithm. Artif. Intell. Rev. 2020; 53(3):2237–2264. doi:10.1007/s10462-019-09732-5
- 29Han S, Sun L, Shen J, Pan L, Lee KY. Optimal load-tracking operation of grid-connected solid oxide fuel cells through set point scheduling and combined L1-MPC control. Energies. 2018; 11(4):801. doi:10.3390/en11040801
- 30Chuahy FDF, Kokjohn SL. Solid oxide fuel cell and advanced combustion engine combined cycle: a pathway to 70% electrical efficiency. Appl Energy. 2019; 235: 391-408. doi:10.1016/j.apenergy.2018.10.132
- 31Wang C, Nehrir MH. A physically based dynamic model for solid oxide fuel cells. IEEE Trans. Energy Convers. 2007; 22(4):887-897. doi:10.1109/TEC.2007.895468
- 32Ma R, Gao F, Breaz E, Huangfu Y, Briois P. Multidimensional reversible solid oxide fuel cell modeling for embedded applications. IEEE Trans. Energy Convers. 2018; 33(2), 692-701. doi:10.1109/TEC.2017.2762962
- 33Park SH, Lee YD, Ahn KY. Performance analysis of an SOFC/HCCI engine hybrid system: system simulation and thermo-economic comparison. Int. J. Hydrogen Energy. 2014; 39(4):1799-1810. doi:10.1016/j.ijhydene.2013.10.171
- 34Yahya A, Ferrero D, Dhahri H, Leone P, Slimi K, Santarelli M. Electrochemical performance of solid oxide fuel cell: experimental study and calibrated model. Energy. 2018; 142: 932-943. doi:10.1016/j.energy.2017.10.088
- 35Bayoumi ASA, El-Sehiemy RA, Abaza A. Effective PV parameter estimation algorithm based on marine predators optimizer considering Normal and low radiation operating conditions. Arab J Sci Eng. 2021; 47: 3089-3104. doi:10.1007/s13369-021-06045-0
- 36Bentouati B, Chaib L, Chettih S. Optimal power flow using the moth flam optimizer: a case study of the algerian power system. Indones. J. Electr. Eng. Comput. Sci. 2016; 1(3):431-445. doi:10.11591/ijeecs.v1.i3
10.11591/ijeecs.v1.i3 Google Scholar
- 37Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems. Knowledge-Based Syst. 2016; 96: 120-133. doi:10.1016/j.knosys.2015.12.022
- 38Wei Y, Stanford RJ. Parameter identification of solid oxide fuel cell by chaotic binary shark smell optimization method. Energy. 2019; 188:115770. doi:10.1016/j.energy.2019.07.100
- 39El-Hay EA, El-Hameed MA, El-Fergany AA. Optimized parameters of SOFC for steady state and transient simulations using interior search algorithm. Energy. 2019; 166: 451-461. doi:10.1016/j.energy.2018.10.038
- 40Rizk-Allah RM, El-Hameed MA, El-Fergany AA. Model parameters extraction of solid oxide fuel cells based on semi-empirical and memory-based chameleon swarm algorithm. Int J Energy Res. 2021; 45(15): 21435-21450. doi:10.1002/er.7192
- 41Faris H, Aljarah I, Mirjalili S. Improved monarch butterfly optimization for unconstrained global search and neural network training. Appl Intell. 2018; 48(2): 445-464.
- 42Bentouati B, Chettih S, El Sehiemy R, Wang GG. Elephant herding optimization for solving non-convex optimal power flow problem. J Electr Electron Eng. 2017; 10(1): 31-36.
- 43Elsakaan AA, El-Sehiemy RA, Kaddah SS, Elsaid MI. An enhanced moth-flame optimizer for solving non-smooth economic dispatch problems with emissions. Energy. 2018; 157: 1063-1078. doi:10.1016/j.energy.2018.06.088
- 44Djekidel R, Bentouati B, Javaid MS, Bouchekara HREH, Bayoumi AS, El-Sehiemy RA. Mitigating the effects of magnetic coupling between HV transmission line and metallic pipeline using slime mould algorithm. J Magn Magn Mater. 2021; 529:167865. doi:10.1016/j.jmmm.2021.167865
- 45Shaheen MAM, Hasanien HM, Turky RA, Ćalasan M, Zobaa AF, Aleem SHEA. OPF of modern power systems comprising renewable energy sources using improved chgs optimization algorithm. Energies. 2021; 14(21):6962. doi:10.3390/en14216962
- 46Ahmadianfar I, Heidari AA, Gandomi AH, Chu X, Chen H. RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method. Expert Syst Appl. 2021; 181:115079.
- 47Tu J, Chen H, Wang M, Gandomi AH. The Colony predation algorithm. J Bionic Eng. 2021; 18(3): 674-710.
- 48El-Sehiemy RA, Rizk-Allah RM, Attia A-F. Assessment of hurricane versus sine-cosine optimization algorithms for economic/ecological emissions load dispatch problem. Int. Trans. Electr. Energy Syst. 2019; 29(2):E2716. doi:10.1002/etep.2716
- 49Hassan MH, Kamel S, Abualigah L, Eid A. Development and application of slime mould algorithm for optimal economic emission dispatch. Expert Syst. Appl. 2021; 182: 115205. doi:10.1016/j.eswa.2021.115205