Sol-gel based copper metallic layer as external anode for microtubular solid oxide fuel cell
Hazrul Adzfar Shabri
Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
Search for more papers by this authorSiti Norlaila Faeizah Mohd Rudin
Process Systems Engineering Centre (PROSPECT), Universiti Teknologi Malaysia, Skudai, Malaysia
Search for more papers by this authorCorresponding Author
Mohd Hafiz Dzarfan Othman
Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
Correspondence
Mohd Hafiz Dzarfan Othman, Advanced Membrane Technology Research Centre (AMTEC), Skudai, Johor 81310, Malaysia.
Email: [email protected]
Search for more papers by this authorSiti Munira Jamil
School of Professional and Continuing Education UTM (UTMSPACE), Universiti Teknologi Malaysia, Johor Bahru, Malaysia
Search for more papers by this authorSiti Nur Elida Aqmar Mohd Kamal
Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
Search for more papers by this authorSuriani Abu Bakar
Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak, Malaysia
Search for more papers by this authorNafisah Osman
Fakulti Sains Gunaan, Universiti Teknologi MARA Cawangan Perlis, Arau, Perlis, Malaysia
Search for more papers by this authorJuhana Jaafar
Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
Search for more papers by this authorMukhlis A Rahman
Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
Search for more papers by this authorAhmad Fauzi Ismail
Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
Search for more papers by this authorHazrul Adzfar Shabri
Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
Search for more papers by this authorSiti Norlaila Faeizah Mohd Rudin
Process Systems Engineering Centre (PROSPECT), Universiti Teknologi Malaysia, Skudai, Malaysia
Search for more papers by this authorCorresponding Author
Mohd Hafiz Dzarfan Othman
Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
Correspondence
Mohd Hafiz Dzarfan Othman, Advanced Membrane Technology Research Centre (AMTEC), Skudai, Johor 81310, Malaysia.
Email: [email protected]
Search for more papers by this authorSiti Munira Jamil
School of Professional and Continuing Education UTM (UTMSPACE), Universiti Teknologi Malaysia, Johor Bahru, Malaysia
Search for more papers by this authorSiti Nur Elida Aqmar Mohd Kamal
Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
Search for more papers by this authorSuriani Abu Bakar
Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak, Malaysia
Search for more papers by this authorNafisah Osman
Fakulti Sains Gunaan, Universiti Teknologi MARA Cawangan Perlis, Arau, Perlis, Malaysia
Search for more papers by this authorJuhana Jaafar
Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
Search for more papers by this authorMukhlis A Rahman
Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
Search for more papers by this authorAhmad Fauzi Ismail
Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
Search for more papers by this authorFunding information: Malaysia Research University Network (MRUN), Grant/Award Number: R.J130000.7809.4L867; Ministry of Higher Education Malaysia, Grant/Award Number: R.J130000.7809.5F161; Universiti Teknologi Malaysia, Grant/Award Numbers: Q.J130000.3009.03M23, R.J130000.7309.4B676, UTM Zamalah Scholarship
Summary
Solid oxide fuel cell (SOFC) performance depends greatly on the anode conductivity, which in traditional nickel-yttria stabilized zirconia (Ni-YSZ) anode is determined by the Ni content that is infamous for its coking problem under hydrocarbon fuel. Without the use of high content of Ni, anode conductivity can be elevated by adding an external metal layer on top of the anode. In this study, we present the incorporation of copper (Cu) metal layer on top of the anode of micro-tubular SOFC by applying a modified sol-gel method using syringe deposition technique at various chemical compositions and deposition cycles. Cu sol was found best to be made up of 2:1:8 ratio of Cu: citric acid: ethylene glycol, with 1.36 μm metal layer formed at 5 deposition cycle, and no obvious increase in thickness after the fifth cycle. The Cu layer elevated the conductivity by 1010 times compared to the uncoated anode. However, the coated layer also reduced the gas permeability by 10 times in the anode, which resulted from the blocking of a nano-sized pore in the anode, rather than the micron size pore. This blocking can be resolved by increasing the amount of micron-sized pore by using pore former during anode fabrication. From electrochemical impedance spectroscopy (EIS), Cu coating reduced the ohmic resistance (Rohm) and charge transfer resistance (Rct). From the current-voltage curve, the maximum power density (MPD) was found to increase linearly with the increase of the Cu coating cycle, but the value is almost stagnant at 2.3 to 2.5 mW cm−2 when the coating cycle of more than 4 was employed. This suggests that anode gas permeation plays an important role in anode conductivity. The findings from this study suggested that 5 deposition cycle shows to be the optimal coating layer required to achieve the percolation threshold without unnecessary loss in permeability.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request from the authors
Supporting Information
Filename | Description |
---|---|
er8073-sup-0001-Supinfo.docxWord 2007 document , 2.8 MB | Table S1 Cu-sol molar ratio Table S2: Decomposition and flash point of component of the sol-gel layer Figure S3.1: Thickness measurement of Cu grain in Cycle 4 deposition Figure S3.2: Gap measurement between Cu grain in Cycle 4 deposition Figure S4: Setup for Cu-coated DL-HF Figure S5: Gas permeation setup Figure S6: Elemental distribution of anode below the Cu layer Figure S7: Measurement of Rohm and Rct from EIS |
er8073-sup-0002-Figures.docxWord 2007 document , 2.5 MB | Figure S1.1 Thickness measurement of Cu grain in Cycle 4 deposition Figure S1.2: Gap measurement between Cu grain in Cycle 4 deposition Figure S2: Elemental distribution of anode below the Cu layer |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Shabri HA, Othman MHD, Mohamed MA, Kurniawan TA, Jamil SM. Recent progress in metal-ceramic anode of solid oxide fuel cell for direct hydrocarbon fuel utilization: a review. Fuel Process Technol. 2021; 212:106626. doi:10.1016/j.fuproc.2020.106626
- 2Prodromidis GN, Coutelieris FA. Solid oxide fuel cell systems for electricity generation: an optimization prospect. Renew Energy. 2020; 146: 38-43. doi:10.1016/j.renene.2019.06.049
- 3Omar AF, Othman MHD, Gunaedi CN, et al. Performance analysis of hollow fibre-based micro-tubular solid oxide fuel cell utilising methane fuel. Int J Hydrogen Energy. 2018; 44: 30754-30762. doi:10.1016/j.ijhydene.2018.03.107
- 4Wang W, Zhu C, Xie K, Gan L. High performance, coking-resistant and sulfur-tolerant anode for solid oxide fuel cell. J Power Sources. 2018; 406: 1-6. doi:10.1016/j.jpowsour.2018.10.040
- 5Kim S, Kim C, Lee JH, Shin J, Lim TH, Kim G. Tailoring Ni-based catalyst by alloying with transition metals (M = Ni, Co, Cu, and Fe) for direct hydrocarbon utilization of energy conversion devices. Electrochim Acta. 2017; 225: 399-406. doi:10.1016/j.electacta.2016.12.178
- 6Akdeniz Y, Timurkutluk B, Timurkutluk C. Development of anodes for direct oxidation of methane fuel in solid oxide fuel cells. Int J Hydrogen Energy. 2016; 41: 1-9. doi:10.1016/j.ijhydene.2016.03.169
- 7de Marco V, Grazioli A, Sglavo VM. Production of planar copper-based anode supported intermediate temperature solid oxide fuel cells cosintered at 950°C. J Power Sources. 2016; 328: 235-240. doi:10.1016/j.jpowsour.2016.08.025
- 8de Marco V, Iannaci A, Rashid S, Sglavo VM. Effect of anode thickness and Cu content on consolidation and performance of planar copper-based anode-supported SOFC. Int J Hydrogen Energy. 2017; 42: 12543-12550. doi:10.1016/j.ijhydene.2017.03.221
- 9Rabuni MF, Li T, Punmeechao P, Li K. Electrode design for direct-methane micro-tubular solid oxide fuel cell (MT-SOFC). J Power Sources. 2018; 384: 287-294. doi:10.1016/j.jpowsour.2018.03.002
- 10Zurlo F, Iannaci A, Sglavo VM, di Bartolomeo E. Copper-based electrodes for IT-SOFC. J Eur Ceram Soc. 2019; 39: 17-20. doi:10.1016/j.jeurceramsoc.2018.02.029
- 11Sarıboğa V, Faruk Öksüzömer MA. Cu-CeO2 anodes for solid oxide fuel cells: determination of infiltration characteristics. J Alloys Compd. 2016; 688: 323-331. doi:10.1016/j.jallcom.2016.07.217
- 12Öksüzömer MAF, Sarıboğa V. Combined Cu-CeO2/YSZ and Ni/YSZ dual layer anode structures for direct methane solid oxide fuel cells. Int J Energy Res. 2018; 42: 3228-3243. doi:10.1002/er.4075
- 13Liu Z, Liu B, Ding D, Liu M, Chen F, Xia C. Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique. J Power Sources. 2013; 237: 243-259. doi:10.1016/j.jpowsour.2013.03.025
- 14Li W. On the limiting factor of impregnation methods for developing Cu/CeO2 anodes for solid oxide fuel cells 2018.
- 15Tian Y, Lü Z, Guo X, Wu P. Catalytic activity of Ni-YSZ composite as anode for methane oxidation in solid oxide fuel cells. Int J Electrochem Sci. 2019; 14: 1093-1106. doi:10.20964/2019.02.48
- 16Wu X, Zhou X, Tian Y, Kong X. Preparation and electrochemical performance of silver impregnated Ni-YSZ anode for solid oxide fuel cell in dry methane. Int J Hydrogen Energy. 2015; 40: 1-10. doi:10.1016/j.ijhydene.2015.09.121
- 17Xu H, Cheng K, Chen M, Zhang L, Brodersen K, Du Y. Interdiffusion between gadolinia doped ceria and yttria stabilized zirconia in solid oxide fuel cells: experimental investigation and kinetic modeling. J Power Sources. 2019; 441:227152. doi:10.1016/j.jpowsour.2019.227152
- 18Ab Rahman M, Othman MHD, Fansuri H, et al. Development of high-performance anode/electrolyte/cathode micro-tubular solid oxide fuel cell via phase inversion-based co-extrusion/co-sintering technique. J Power Sources. 2020; 467:228345. doi:10.1016/j.jpowsour.2020.228345
- 19Feng J, Qiao J, Sun W, et al. Characteristic and preparation of Ce0.5Zr0.5O2 as the anode support for solid oxide fuel cells by phase inversion technology. Int J Hydrogen Energy. 2015; 40: 12784-12789. doi:10.1016/j.ijhydene.2015.07.121
- 20Deng J, Li S, Xiong L, et al. Preparation of nanostructured CeO2-ZrO2-based materials with stabilized surface area and their catalysis in soot oxidation. Appl Surf Sci. 2020; 505:144301. doi:10.1016/j.apsusc.2019.144301
- 21Dimesso L. Handbook of sol-Gel Science and Technology. Cham: Springer International Publishing; 2017. doi:10.1007/978-3-319-19454-7
10.1007/978?3?319?19454?7 Google Scholar
- 22Shabri HA, Rudin SNFM, Deraman S, et al. Low nickel, ceria zirconia-based micro-tubular solid oxide fuel cell: a study of composition and oxidation using hydrogen and methane fuel. Sustainability. 2021; 13: 13789. doi:10.3390/su132413789.
- 23Izadi F, Ranjbarzadeh R, Kalbasi R, Afrand M. A new experimental correlation for non-Newtonian behavior of COOH-DWCNTs/antifreeze nanofluid. Physica E. 2018; 98: 83-89. doi:10.1016/j.physe.2017.12.031
- 24Yapici K, Osturk O, Uludag Y. Dependency of nanofluid rheology on particle size and concentration of various metal oxide nanoparticles. Brazil J Chem Eng. 2018; 35: 575-586. doi:10.1590/0104-6632.20180352s20160172
- 25Esmaeili S, Modaresghazani J, Sarma H, Harding T, Maini B. Effect of temperature on relative permeability – role of viscosity ratio. Fuel. 2020; 278:118318. doi:10.1016/j.fuel.2020.118318
- 26Starov VM, Zhdanov VG. Effective viscosity and permeability of porous media. Colloids Surf A Physicochem Eng Asp. 2001; 192: 363-375. doi:10.1016/S0927-7757(01)00737-3
- 27Armelao L, Barreca D, Bertapelle M, Bottaro G, Sada C, Tondello E. A sol–gel approach to nanophasic copper oxide thin films. Thin Solid Films. 2003; 442: 48-52. doi:10.1016/S0040-6090(03)00940-4
- 28Ab Rahman M, Othman MHD, Wibisono Y, et al. Effect of electrolyte thickness manipulation on enhancing carbon deposition resistance of methane-fueled solid oxide fuel cell. Int J Energy Res. 2020; 45: 2837-2855. doi:10.1002/er.5981
- 29Jamil SM, Rahman MA, Shabri HA, Othman MHD. Solid electrolyte membranes for low- and high-temperature fuel cells. In: Z Zhang, W Zhang, MM Chehimi, eds. Membrane Technology Enhancement for Environmental Protection and Sustainable Industrial Growth. Cham: Springer International Publishing; 2021: 109-125. doi:10.1007/978-3-030-41295-1_8
10.1007/978-3-030-41295-1_8 Google Scholar
- 30Bochentyn B, Chlipała M, Gazda M, Wang SF, Jasiński P. Copper and cobalt co-doped ceria as an anode catalyst for DIR-SOFCs fueled by biogas. Solid State Ion. 2019; 330: 47-53. doi:10.1016/j.ssi.2018.12.007
- 31Coles-Aldridge AV, Baker RT. Oxygen ion conductivity in ceria-based electrolytes co-doped with samarium and gadolinium. Solid State Ion. 2020; 347:115255. doi:10.1016/j.ssi.2020.115255
- 32Lasia A. Electrochemical Impedance Spectroscopy and its Applications. New York, NY: Springer; 2014. doi:10.1007/978-1-4614-8933-7
10.1007/978-1-4614-8933-7 Google Scholar
- 33Xu H, Chen Y, Kim JH, Dang Z, Liu M. Lattice Boltzmann modelling of the coupling between charge transport and electrochemical reactions in a solid oxide fuel cell with a patterned anode. Int J Hydrogen Energy. 2019; 44: 30293-30305. doi:10.1016/j.ijhydene.2019.09.086
- 34Koomson S, Lee CG. Experimental analysis of internal leakage current using a 100 cm2 class planar solid oxide fuel cell. Int J Hydrogen Energy. 2021; 46: 31807-31815. doi:10.1016/j.ijhydene.2021.07.075
- 35Dierickx S, Joos J, Weber A, Ivers-Tiffée E. Advanced impedance modelling of Ni/8YSZ cermet anodes. Electrochim Acta. 2018; 265: 736-750. doi:10.1016/j.electacta.2017.12.029
- 36Hanna J, Lee WY, Shi Y, Ghoniem AF. Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels. Prog Energy Combus Sci. 2014; 40: 74-111. doi:10.1016/j.pecs.2013.10.001
- 37Zhang Y, Chen Y, Yan M. An open circuit voltage equation enabling separation of cathode and anode polarization resistances of ceria electrolyte based solid oxide fuel cells. J Power Sources. 2017; 357: 173-178. doi:10.1016/j.jpowsour.2017.04.096
- 38Virkar AV, Chen J, Tanner CW, Kim J-W. The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ionics. 2000; 131: 189-198. doi:10.1016/s0167-2738(00)00633-0
- 39Riegraf M, Dierickx S, Weber A, Costa R, Schiller G, Friedrich KA. Electrochemical impedance analysis of Ni/CGO10-based electrolyte-supported cells. ECS Trans. 2019; 91: 1985-1992. doi:10.1149/09101.1985ecst
- 40Curi M, da Silva ER, de Furtado JGM, Ferraz HC, Secchi AR. Anodes for SOFC: review of material selection, interface and electrochemical phenomena. Quimica Nova. 2021; 44: 86-97. doi:10.21577/0100-4042.20170652
- 41Shishkin M, Ziegler T. Direct modeling of the electrochemistry in the three-phase boundary of solid oxide fuel cell anodes by density functional theory: a critical overview. Phys Chem Chem Phys. 2014; 16: 1798-1808. doi:10.1039/c3cp53943a
- 42Shishkin M, Ziegler T. The electronic structure and chemical properties of a Ni/CeO2 anode in a solid oxide fuel cell: A DFT + U Study 2010: 21411-21416.
- 43Shishkin M, Ziegler T. Hydrogen oxidation at the Ni/Yttria-stabilized zirconia interface: a study based on density functional theory. J Phys Chem; 2010; 114: 11209-11214. doi:10.1021/jp1030575
- 44Shishkin M, Ziegler T. Oxidation of H2, CH4, and CO molecules at the Interface between nickel and Yttria-stabilized zirconia: A Theoretical Study Based on DFT 2009: 21667-21678.
- 45Papaefthimiou V, Shishkin M, Niakolas DK, et al. On the active surface state of nickel-ceria solid oxide fuel cell anodes during methane electrooxidation. Adv Energy Mater. 2013; 3: 762-769. doi:10.1002/aenm.201200727
- 46Huang W, Finnerty C, Wang K, Sharp R, Balili B. Operation of micro tubular solid oxide fuel cells integrated with propane reformers. Int J Hydrogen Energy. 2019; 44: 32158-32163. doi:10.1016/j.ijhydene.2019.10.061
- 47Khan MZ, Mehran MT, Song RH, Lee SB, Lim TH. Effects of applied current density and thermal cycling on the degradation of a solid oxide fuel cell cathode. Int J Hydrogen Energy. 2018; 43: 12346-12357. doi:10.1016/j.ijhydene.2018.04.175
- 48Hagart-Alexander C. Temperature Measurement. Instrumentation Reference Book. Amsterdam, The Netherlands: Elsevier; 2010. doi:10.1016/B978-0-7506-8308-1.00021-8
10.1016/B978?0?7506?8308?1.00021?8 Google Scholar
- 49Luo J, Ball RJ, Stevens R, Luo J, Ball RJ, Stevens R. Gadolinia doped ceria/yttria stabilised zirconia electrolytes for solid oxide fuel cell applications. J Mater Sci. 2004; 39(1): 235-240. doi:10.1023/b:jmsc.0000007749.72739.bb
- 50Rudin SNFM, Ab Muis Z, Hashim H, Ho WS. Techno-economic assessment of integrated power plant with methanation. Chem Eng Trans. 2018; 63: 451-456. doi:10.3303/CET1863076
10.3303/CET1863076 Google Scholar
- 51Rudin SNFM, Muis ZA, Ramli AF, et al. Sustainable supply of hydrogen for integrated power plant with methanation via pinch analysis. IOP Conf Seri Mater Sci Eng. 2020; 884:12013. doi:10.1088/1757-899X/884/1/012013