Effect of poly(acrylic acid) binder on the stability of sulfur-enriched crystalline Mo3S13 clusters for high capacity of Li-ion batteries
Hae Ri Lee
Department of Energy Engineering, Konkuk University, Seoul, South Korea
Search for more papers by this authorYoun-Ki Lee
Carbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Wanju, South Korea
School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
Search for more papers by this authorGwan Gyu Park
Department of Energy Engineering, Konkuk University, Seoul, South Korea
Search for more papers by this authorSungho Lee
Carbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Wanju, South Korea
Department of Quantum System Engineering, Jeonbuk National University, Jeonju, South Korea
Search for more papers by this authorCorresponding Author
Han-Ik Joh
Department of Energy Engineering, Konkuk University, Seoul, South Korea
Correspondence
Han-Ik Joh, Department of Energy Engineering, Konkuk University, Seoul 05029, South Korea.
Email: [email protected]
Search for more papers by this authorHae Ri Lee
Department of Energy Engineering, Konkuk University, Seoul, South Korea
Search for more papers by this authorYoun-Ki Lee
Carbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Wanju, South Korea
School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
Search for more papers by this authorGwan Gyu Park
Department of Energy Engineering, Konkuk University, Seoul, South Korea
Search for more papers by this authorSungho Lee
Carbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Wanju, South Korea
Department of Quantum System Engineering, Jeonbuk National University, Jeonju, South Korea
Search for more papers by this authorCorresponding Author
Han-Ik Joh
Department of Energy Engineering, Konkuk University, Seoul, South Korea
Correspondence
Han-Ik Joh, Department of Energy Engineering, Konkuk University, Seoul 05029, South Korea.
Email: [email protected]
Search for more papers by this authorFunding information: Konkuk University 2018
Summary
Molybdenum sulfide (MoSx)-based materials have been extensively studied as a potential alternative of low-capacity graphite anode, owing to their remarkable capacity through intercalation and conversion reactions. However, these materials should be electrochemically activated at a low potential in first discharge and simultaneously degrade, owing to their inert basal plane and unstable sulfur configuration, respectively, leading to unexpectedly low performance. Hence, it is necessary to apply sulfur-enriched crystalline Mo3S13 clusters as an anode material to increase the number of active sites and energy densities. Unlike MoS2 possessing only terminal sulfur, Mo3S13 clusters have higher sulfur content with various and stable configuration in their structure, which can act as additional active sulfur sites. To realize an electrode with high energy density, we used the Mo3S13 clusters without any carbon supports as active materials. In the electrode preparation, we confirmed that employing poly(acrylic acid) and isopropyl alcohol as a binder and solvent, respectively, was appropriate for retaining the cluster crystallinity, resulting in the enhanced cycling stability. The Mo3S13 cluster-based electrode as a carbon-free electrode exhibited capacity of 1192 mAh g−1 at 0.1 A g−1 and good C-rate capability. The significant capacity variation with the selective removal of sulfur configuration in Mo3S13 clusters indicates that the increased sulfur contents were provided as additional sources for (de)lithiation.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
er8068-sup-0001-Supinfo.docxWord 2007 document , 3.5 MB | Appendix S1 Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Miao Y, Hynan P, Von Jouanne A, Yokochi A. Current li-ion battery technologies in electric vehicles and opportunities for advancements. Energies. 2019; 12(6): 1074. doi:10.3390/en12061074
- 2Rozier P, Tarascon JM. Review—li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. J Electrochem Soc. 2015; 162(14): A2490-A2499. doi:10.1149/2.0111514jes
- 3Zhao J, Zhang Y, Wang Y, Li H, Peng Y. The application of nanostructured transition metal sulfides as anodes for lithium ion batteries. J Energy Chem. 2018; 27: 1536-1554. doi:10.1016/j.jechem.2018.01.009
- 4Geng P, Zheng S, Tang H, et al. Transition metal sulfides based on graphene for electrochemical energy storage. Adv Energy Mater. 2018; 8: 1-26. doi:10.1002/aenm.201703259
- 5Xu X, Liu W, Kim Y, Cho J. Nanostructured transition metal sulfides for lithium ion batteries: Progress and challenges. Nano Today. 2014; 9: 604-630. doi:10.1016/j.nantod.2014.09.005
- 6Stephenson T, Li Z, Olsen B, Mitlin D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energ Environ Sci. 2014; 7: 209-231. doi:10.1039/c3ee42591f
- 7Su Q, Wang S, Feng M, Du G, Xu B. Direct studies on the lithium-storage mechanism of molybdenum disulfide. Sci Rep. 2017; 7: 1-10. doi:10.1038/s41598-017-07648-0
- 8Singh AK, Kumar P, Late DJ, Kumar A, Patel S, Singh J. 2D layered transition metal dichalcogenides (MoS2): synthesis, applications and theoretical aspects. Appl Mater Today. 2018; 13: 242-270. doi:10.1016/j.apmt.2018.09.003
- 9Bulusheva LG, Koroteev VO, Stolyarova SG, et al. Effect of in-plane size of MoS2 nanoparticles grown over multilayer graphene on the electrochemical performance of anodes in Li-ion batteries. Electrochim Acta. 2018; 283: 45-53. doi:10.1016/j.electacta.2018.06.134
- 10Fan L, Lei S, Sari HMK, et al. Controllable S-vacancies of monolayered Mo–S nanocrystals for highly harvesting lithium storage. Nano Energy. 2020; 78:105235. doi:10.1016/j.nanoen.2020.105235
- 11Sun X, Wang Z, Fu YQ. Defect-mediated lithium adsorption and diffusion on monolayer molybdenum disulfide. Sci Rep. 2015; 5: 1-9. doi:10.1038/srep18712
- 12Doan-Nguyen VVT, Subrahmanyam KS, Butala MM, et al. Molybdenum polysulfide chalcogels as high-capacity, anion-redox-driven electrode materials for Li-ion batteries. Chem Mater. 2016; 28: 8357-8365. doi:10.1021/acs.chemmater.6b03656
- 13Chang U, Lee JT, Yun J-M, et al. In situ self-formed nanosheet MoS3/reduced graphene oxide material showing superior performance as a Lithium-ion battery cathode. ACS Nano. 2019; 13: 1490-1498. doi:10.1021/acsnano.8b07191
- 14Lee Y-K, Lee M, Lee GW, et al. Amorphous MoSx embedded within edges of modified graphite as fast-charging anode material for rechargeable batteries. Appl Surf Sci. 2020; 509:145352. doi:10.1016/j.apsusc.2020.145352
- 15Zhou Y, Li Y, Wang Q, et al. Ultrasmall MoS3 loaded GO nanocomposites as high-rate and long-cycle-life anode materials for lithium- and sodium-ion batteries. ChemElectroChem. 2019; 6: 3113-3119. doi:10.1002/celc.201900756
- 16Li X, Wu G, Chen J, et al. Low-crystallinity molybdenum sulfide nanosheets assembled on carbon nanotubes for long-life lithium storage: unusual electrochemical behaviors and ascending capacities. Appl Surf Sci. 2017; 392: 297-304. doi:10.1016/j.apsusc.2016.09.055
- 17Ji S, Kim SK, Song W, et al. Extraordinary lithium storage capacity and lithiation mechanism of partially amorphous molybdenum sulfide on chemically exfoliated graphene. Electrochim Acta. 2020; 354:136636. doi:10.1016/J.electacta.2020.136636
- 18Dinh DA, Nguyen TL, Cuong TV, et al. Defect-free MoS2-flakes/amorphous-carbon hybrid as an advanced anode for lithium-ion batteries. Energy and Fuels. 2021; 35: 3459-3468. doi:10.1021/acs.energyfuels.0c03896
- 19Jawaid A, Nepal D, Park K, et al. Mechanism for liquid phase exfoliation of MoS2. Chem Mater. 2016; 28: 337-348. doi:10.1021/acs.chemmater.5b04224
- 20Chua XJ, Pumera M. Molybdenum sulfide electrocatalysis is dramatically influenced by solvents used for its dispersions. ACS Omega. 2018; 3: 14371-14379. doi:10.1021/acsomega.8b02019
- 21Weber T, Muijsers JC, Niemantsverdriet JW. Structure of amorphous MoS3. J Phys Chem. 1995; 99: 9194-9200. doi:10.1021/j100022a037
- 22Lince JR, Pluntze AM, Jackson SA, Radhakrishnan G, Adams PM. Tribochemistry of MoS3 nanoparticle coatings. Tribol Lett. 2014; 53: 543-554. doi:10.1007/s11249-014-0293-4
- 23Ye H, Ma L, Zhou Y, et al. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li–S and Na–S batteries. Proc Natl Acad Sci U S A. 2017; 114: 13091-13096. doi:10.1073/pnas.1711917114
- 24Wu Q, Abraham A, Wang L, et al. Electrodeposition of MoSx: tunable fabrication of sulfur equivalent electrodes for high capacity or high power. J Electrochem Soc. 2020; 167:050513. doi:10.1149/1945-7111/ab717d
- 25Kibsgaard J, Jaramillo TF, Besenbacher F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters. Nat Chem. 2014; 6: 248-253. doi:10.1038/nchem.1853
- 26Pham CV, Zana A, Arenz M, Thiele S. [Mo3S13]2− cluster decorated sulfur-doped reduced graphene oxide as noble metal-free catalyst for hydrogen evolution reaction in polymer electrolyte membrane electrolyzers. ChemElectroChem. 2018; 5: 2672-2680. doi:10.1002/celc.201800719
- 27Lee C-H, Lee S, Lee Y-K, et al. Understanding the origin of formation and active sites for thiomolybdate [Mo3S13]2− clusters as hydrogen evolution catalyst through the selective control of sulfur atoms. ACS Catal. 2018; 8: 5221-5227. doi:10.1021/acscatal.8b01034
- 28Baloglou A, Ončák M, Grutza ML, van der Linde C, Kurz P, Beyer MK. Structural properties of gas phase molybdenum sulfide clusters [Mo3S13]2−, [HMo3S13]−, and [HMo3S13]+ as model systems of a promising hydrogen evolution catalyst. J Phys Chem C. 2019; 123: 8177-8186. doi:10.1021/acs.jpcc.8b08324
- 29Hellstern TR, Kibsgaard J, Tsai C, et al. Investigating catalyst-support interactions to improve the hydrogen evolution reaction activity of thiomolybdate [Mo3S13]2− nanoclusters. ACS Catal. 2017; 7: 7126-7130. doi:10.1021/acscatal.7b02133
- 30Müller A, Fedin V, Hegetschweiler K, Amrein W. Characterization of amorphous substances by studying isotopically labelled compounds with FAB-MS: evidence for extrusion of triangular Mo3IV clusters from a mixture of 92MoS3 and 100MoS3 by reaction with OH. J Chem Soc Chem Commun. 1992; 7: 1795-1796. doi:10.1039/C39920001795
10.1039/C39920001795 Google Scholar
- 31Ding S, Zhou B, Chen C, et al. Sulfur-rich (NH4)2Mo3S13 as a highly reversible anode for sodium/potassium-ion batteries. ACS Nano. 2020; 14: 9626-9636. doi:10.1021/acsnano.0c00101
- 32Cheng YJ, Wang R, Wang S, Xi X-J, Ma L-F, Zang S-Q. Encapsulating [Mo3S13]2− clusters in cationic covalent organic frameworks: enhancing stability and recyclability by converting a homogeneous photocatalyst to a heterogeneous photocatalyst. Chem Commun. 2018; 54: 13563-13566. doi:10.1039/c8cc07784c
- 33Du K, Zheng L, Wang T, et al. Electrodeposited Mo3S13 films from (NH4)2Mo3S13·2H2O for electrocatalysis of hydrogen evolution reaction. ACS Appl Mater Interfaces. 2017; 9: 18675-18681. doi:10.1021/acsami.7b01333
- 34Kan M, Jia J, Zhao Y. High performance nanoporous silicon photoelectrodes co-catalyzed with an earth abundant [Mo3S13]2− nanocluster via drop coating. RSC Adv. 2016; 6: 15610-15614. doi:10.1039/c6ra01109h
- 35Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K. Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries. J Phys Chem C. 2011; 115: 13487-13495. doi:10.1021/jp201691g
- 36Zhang Z, Bao W, Lu H, et al. Water-soluble polyacrylic acid as a binder for sulfur cathode in lithium-sulfur battery. ECS Electrochem Lett. 2012; 1: 1-5. doi:10.1149/2.009202eel
- 37Parikh P, Sina M, Banerjee A, et al. Role of polyacrylic acid (PAA) binder on the solid electrolyte interphase in silicon anodes. Chem Mater. 2019; 31: 2535-2544. doi:10.1021/acs.chemmater.8b05020
- 38Islam SM, Cain JD, Shi F, et al. Conversion of single crystal (NH4)2Mo3S13·2H2O to isomorphic pseudocrystals of MoS2 nanoparticles. Chem Mater. 2018; 30: 3847-3853. doi:10.1021/acs.chemmater.8b01247
- 39Hibble SJ, Feaviour MR. An in situ structural study of the thermal decomposition reactions of the ammonium thiomolybdates, (NH4)2Mo2S12·2H2O and (NH4)2Mo3S13·2H2O. J Mater Chem. 2011; 11: 2607-2614. doi:10.1039/b103129p
10.1039/b103129p Google Scholar
- 40Deng Y, Ting LRL, Neo PHL, Zhang Y-J, Peterson AA, Yeo BS. Operando Raman spectroscopy of amorphous molybdenum sulfide (MoSx) during the electrochemical hydrogen evolution reaction: identification of sulfur atoms as catalytically active sites for H+ reduction. ACS Catal. 2016; 6: 7790-7798. doi:10.1021/acscatal.6b01848
- 41Chirdon DN, Lalisse RF, Sun J, et al. [Mo2O2S8]2− small molecule dimer as a basis for hydrogen evolution reaction (HER) catalyst materials. SN Appl Sci. 2020; 2: 1-13. doi:10.1007/s42452-020-2706-3
- 42Gopika MS, Bindhu B. Preparation and characterization of few layered MoS2 nano flakes. Int J Recent Technol Eng. 2019; 8: 146-148. doi:10.35940/ijrte.B1027.0782S319
10.35940/ijrte.B1027.0782S319 Google Scholar
- 43Guo X, Wang Z, Zhu W, Yang H. The novel and facile preparation of multilayer MoS2 crystals by a chelation-assisted sol-gel method and their electrochemical performance. RSC Adv. 2017; 7: 9009-9014. 10.1039/C6RA25558B
- 44Choi M, Koppala SK, Yoon D, Hwang J, Kim SM, Kim J. A route to synthesis molybdenum disulfide-reduced graphene oxide (MoS2-RGO) composites using supercritical methanol and their enhanced electrochemical performance for Li-ion batteries. J Power Sources. 2016; 309: 202-211. doi:10.1016/j.jpowsour.2016.01.081
- 45Wang H, Ren D, Zhu Z, Saha P, Jiang H, Li C. Few-layer MoS2 nanosheets incorporated into hierarchical porous carbon for lithium-ion batteries. Chem Eng J. 2016; 288: 179-184. doi:10.1016/j.cej.2015.11.105
- 46Augustyn V. Tuning the interlayer of transition metal oxides for electrochemical energy storage. J Mater Res. 2017; 32: 2-15. doi:10.1557/jmr.2016.337