Ab initio study for the structural, electronic, magnetic, optical, and thermoelectric properties of K2OsX6 (X = Cl, Br) compounds
Rehan Ullah
Department of Physics, Government Post Graduate Jahanzeb College Saidu Sharif, Swat, Pakistan
Search for more papers by this authorCorresponding Author
Malak Azmat Ali
Department of Physics, Government Post Graduate Jahanzeb College Saidu Sharif, Swat, Pakistan
Correspondence
Malak Azmat Ali, Department of Physics, Government Post Graduate Jahanzeb College Saidu Sharif, Swat 19130, Khyber Pakhtunkhwa, Pakistan.
Email: [email protected], [email protected]
Search for more papers by this authorG. Murtaza
Materials Modeling Lab, Department of Physics, Islamia College, Peshawar, Pakistan
Search for more papers by this authorAfzal Khan
Department of Physics, University of Peshawar, Peshawar, Pakistan
Search for more papers by this authorAsif Mahmood
Chemical Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
Search for more papers by this authorRehan Ullah
Department of Physics, Government Post Graduate Jahanzeb College Saidu Sharif, Swat, Pakistan
Search for more papers by this authorCorresponding Author
Malak Azmat Ali
Department of Physics, Government Post Graduate Jahanzeb College Saidu Sharif, Swat, Pakistan
Correspondence
Malak Azmat Ali, Department of Physics, Government Post Graduate Jahanzeb College Saidu Sharif, Swat 19130, Khyber Pakhtunkhwa, Pakistan.
Email: [email protected], [email protected]
Search for more papers by this authorG. Murtaza
Materials Modeling Lab, Department of Physics, Islamia College, Peshawar, Pakistan
Search for more papers by this authorAfzal Khan
Department of Physics, University of Peshawar, Peshawar, Pakistan
Search for more papers by this authorAsif Mahmood
Chemical Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
Search for more papers by this authorSummary
Density-functional theory based, first-principles spin-polarized calculations of the structural, electronic, magnetic, optical, and thermoelectric characteristics of K2OsX6 (X = Cl, Br) are presented. Structural optimization confirms the stability of these compounds in ferromagnetic phase with curie temperatures of 726 K (K2OsCl6) and 557 K (K2OsBr6). The calculated formation and cohesive energies present K2OsX6 compounds as thermodynamically stable and strongly bonded. Computed electronic properties explore both the compounds as half-metallic. In the spin-up channel, they exhibit semiconducting nature, having direct band gap values of 2.69 eV (K2OsCl6) and 2.1 eV (K2OsBr6), while in spin-down configuration, they turn into metals. The calculated ferromagnetic total spins magnetic moment per formula unit is 2.00 μB for both the compounds with major contributions from Os-t2g states. The reasonable values of optical parameters like optical conductance, absorption factor, refractive index, and reflectivity potentially dedicate these compounds for optoelectronic applications. The calculated positive Seebeck coefficient with maximum values of 76.4 μV/K, for K2OsCl6, and 99.9 μV/K, for K2OsBr6, represent these compounds as p-type materials. The proposed compounds may achieve consideration in spintronic, thermoelectric, and optoelectronic devices.
REFERENCES
- 1Prinz GA. Magnetoelectronics. Science. 1998; 282: 1660-1663.
- 2de Groot RA, Mueller FM, Engen PGV. New class of materials: half-metallic ferromagnets. Phys Rev Lett. 1983; 50: 2024.
- 3Li L, Gao Q, Lei G, Xie HH, Deng JB, Hu XR. First-principles investigations on electronic and thermodynamic properties of double perovskite Sr2XMoO6 (X=Ge and Si). J Phys Chem Solids. 2016; 94: 30.
- 4Kubler J, Williams AR, Sommers CB. Formation and coupling of magnetic moments in Heusler alloys. Phys Rev B. 1983; 28: 1745-1755.
- 5Katsnelson MI, Irkhin VY, Chioncel L, Lichtenstein AI, De Groot RA. Half-metallic ferromagnets: from band structure to many-body effects. Rev Mod Phys. 2008; 80: 315-378.
- 6Atsufumi H, Koki T. Future perspectives for spintronic devices. J Phys D. 2014; 47:193001.
- 7Bouadjemi B, Bentata S, Abbad A, Benstaali W, Bouhafs B. Half-metallic ferromagnetism in PrMnO3 perovskite from first principles calculations. Solid State Commun. 2013; 168: 6-10.
- 8Abbad A, Benstaali W, Bentounes HA, Bentata S, Benmalem Y. Search for half-metallic ferromagnetism in orthorhombic Ce(Fe/Cr)O3 perovskites. Solid State Commun. 2016; 228: 36-42.
- 9Park JH, Vescovo E, Kim HJ, Kwon C, Ramesh R, Venkatesan T. Direct evidence for a half-metallic ferromagnet. Nature. 1998; 392: 794-796.
- 10Dar SA, Khandy SA, Islam I, et al. Temperature and pressure dependent electronic, mechanical and thermal properties of f-electron based ferromagnetic barium neptunate. Chin J Phys. 2017; 55: 1769-1779.
- 11Hamlat M, Boudia K, Amara K, Khelfaoui F, Marbouh N. Half-metallic stability of the cubic Perovskite KMgO3. Comput Condens Matter. 2020; 23:e00456.
- 12Khandy SA, Gupta DC. Investigation of the transport, structural and mechanical properties of half-metallic REMnO3 (RE = Ce and Pr) ferromagnets. RSC Adv. 2016; 6:97641.
- 13Zhang W, Song Z, Peng B, Zhang W. Electronic structure and magnetism in M(=IA, IIA)C compounds with the rocksalt structure. J Appl Phys. 2012; 112:043905.
- 14Lei G, Liu XX, Xie HH, Li L, Gao Q, Deng JB. First-principle study of half-metallic ferromagnetism in rocksalt XO (X=Li, K, Rb, Cs). J Magn Magn Mater. 2016; 397: 176.
- 15Khandy SA, Chai JD. Robust stability, half-metallic ferrimagnetism and thermoelectric properties of new quaternary Heusler material: a first principles approach. J Magn Magn Mater. 2020; 502:166562.
- 16Liu GD, Dai XF, Liu HY, et al. Mn2CoZ(Z=Al,Ga,in,Si,Ge,Sn,Sb) compounds: structural, electronic, and magnetic properties. Phys Rev B. 2008; 77:014424.
- 17Caraballo-Vivas RJ, Tedesco JCG, Checca NR, et al. Experimental and theoretical evidences that atomic disorder suppresses half-metallicity of Heusler compounds. Intermetallics. 2019; 111:106502.
- 18Khandy SA, Islam I, Gupta DC, Laref A. Full Heusler alloys (Co2TaSi and Co2TaGe) as potential spintronic materials with tunable band profiles. J Solid State Chem. 2019; 270: 173-179.
- 19Liu W, Zhang X, Jia H, Khenata R, Dai X, Liu G. Theoretical investigations on the mechanical, magneto-electronic properties and half-metallic characteristics of ZrRhTiZ (Z = Al, Ga) quaternary Heusler compounds. Appl Sci. 2019; 9: 883.
- 20Pourebrahim G, Ahmadian F, Momeni P. Robust half-Metallicity in quaternary Heusler compounds KSrNZ (Z = O, S, and se). J Supercond Nov Magn. 2019; 32: 3305-3314.
- 21Singh M, Saini HS, Kumar S, Kashyap MK. Effect of substituting sp-element on half metallic ferromagnetism in NiCrSi Heusler alloy. Comput Mater Sci. 2012; 53: 431-435.
- 22Özdemir EG, Merdan Z. First principle predictions on half-metallic results of MnZrX (X = In, Tl, C, Si, Ge, Sn, Pb, N, P, As, Sb, O, S, Se, Te) half-Heusler compounds. J Supercond Nov Magn. 2019; 491:165567.
- 23Schwarz K. CrO2 predicted as a half-metallic ferromagnet. J Phys F. 1986; 16: L211-L215.
- 24Jeng HT, Guo GY. First-principles investigations of the electronic structure and magnetocrystalline anisotropy in strained magnetiteFe3O4. Phys Rev B. 2002; 65:094429.
- 25Berri S. First-principles study on half-metallic properties of the Sr2GdReO6 double perovskite. J Magn Magn Mater. 2015; 385: 124.
- 26Koepernik K, Eschrig H. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys Rev B. 1999; 59: 1743-1757.
- 27Djefal A, Amari S, Obodo KO, et al. Half-metallic ferromagnetism in double perovskite Ca2CoMoO6 compound: DFT+U calculations. Spin. 2017; 7:1750009.
- 28Khandy SA, Gupta DC. Electronic structure, magnetism and thermoelectricity in layered perovskites: Sr2SnMnO6 and Sr2SnFeO6. J Supercond Nov Magn. 2017; 441: 166.
- 29Kato H, Okuda T, Okimoto Y, et al. Metallic ordered double-perovskite Sr2CrReO6 with maximal curie temperature of 635 K. Appl Phys Lett. 2002; 81: 328-330.
- 30Hauser AJ, Williams RE, Ricciardo RA, et al. Unlocking the potential of half-metallic Sr2FeMoO6 films through controlled stoichiometry and double-perovskite ordering. Phys Rev B. 2011; 83:014407.
- 31Haid S, Bouadjemi B, Houari M, et al. Investigation of DFT+U effect of holmium rare-earth on the electronic, magnetic and the half-metallic ferromagnetic properties' of double perovskite Ba2HoReO6. Solid State Commun. 2019; 294: 29-35.
- 32Wang X, Chen X, Dong R, Huang Y, Lu W. Ferromagnetism in carbon-doped ZnO films from first-principle study. Phys Lett A. 2009; 373: 3091-3096.
- 33Quail JW, Rivett GA. Complex fluorides of tetravalent cobalt. Can J Chem. 1972; 50: 2447-2450.
- 34Faizan M, Khan SH, Murtaza G, Khan A, Laref A. Electronic and magnetic properties of alkali metal chlorides A2MCl6 (A = K, Rb, Cs; M = Mn, Mo): a density functional theory study. Int J Mod Phys B. 2019; 33:1950072.
- 35Faizan M, Khan SH, Khan A, Laref A, Murtaza G. Ab-initio prediction of structural, electronic and magnetic properties of hexafluoromanganete(IV) complexes. Int J Mod Phys B. 2018; 32:1850270.
- 36Ali MA, Murtaza G, Laref A. Exploring the ferromagnetic half metallic nature of Cs2NpBr6 via spin polarized density functional theory. Chin J Phys. 2020; 29: 066102. https://doi.org/10.1088/1674-1056/ab7da4.
- 37McCullough JD. The crystal structure of Potassium chlorosmate, K2OsCl6, and of potassium bromosmate, K2OsBr6. Z Kristallogr - Cryst Mater. 1936; 94: 143.
- 38Turner AG, Clifford AF, Rao CR. Crystallographic data. 174. Potassium hexachloro-osmate, K2OsCl6, and potassium hexabromo-osmate, K2OsBr6. Anal Chem. 1958; 30: 1708.
- 39Brik MG, Kityk IV, Phys J. Modeling of lattice constant and their relations with ionic radii and electronegativity of constituting ions of A2XY6 cubic crystals (A=K, Cs, Rb, Tl; X=tetravalent cation, Y=F, Cl, Br, I). J Phys Chem Solids. 2011; 72: 1256-1260.
- 40Sidey V. A simplified empirical model for predicting the lattice parameters for the cubic perovskite-related inorganic A2BX6 halides. J Phys Chem Solids. 2019; 126: 310.
- 41Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964; 136: B864.
- 42Perdew P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B. 1992; 45:13244.
- 43P. Blaha, et al., (2001). WIEN2k: An augmented plane wave+ local orbitals program for calculating crystal properties.
- 44Madsen GKH, Schwarz K, Singh DJ. BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun. 2006; 175: 67-71.
- 45Wu Z, Cohen RE. More accurate generalized gradient approximation for solids. Phys Rev B. 2006; 73:235116.
- 46Dar SA, Srivastava V, Sakalle UK, Parey V, Pagare G. DFT investigation on electronic, magnetic, mechanical and thermodynamic properties under pressure of some EuMO3(M = Ga, in) perovskites. Mater Res Exp. 2017; 4:106104.
- 47Cococcioni M, De Gironcoli S. Linear response approach to the calculation of the effective interaction parameters in theLDA+Umethod. Phys Rev B. 2005; 71:035105.
- 48Sharma R, Dar SA, Mishra AB. Structure, electronic, magnetic and optical properties of cubic Hf1-x(TM)xO2 (X = 0, 0.25, TM = Mn, Fe, Co, Ni): a first principle investigation. J Alloys Compd. 2019; 791: 983-993.
- 49Sabir B, Murtaza G, Mahmood Q, Ahmad R, Bhamu KC. First principles investigations of electronics, magnetic, and thermoelectric properties of rare earth based PrYO3 (Y=Cr, V) perovskites. Curr Appl Phys. 2017; 17: 1539-1546.
- 50Yakoubi A, Baraka O, Bouhafs B. Structural and electronic properties of the laves phase based on rare earth type BaM2 (M=Rh, Pd, Pt). Results Phys. 2012; 2: 58-65.
- 51Murnaghan FD. The compressibility of media under extreme pressures. Proc Natl Acad Sci U S A. 1944; 30: 244-247.
- 52Singh KD, Pandit R, Kumar R. Effect of rare earth ions on structural and optical properties of specific perovskite orthochromates; RCrO3 (R = La, Nd, Eu, Gd, Dy, and Y). Solid State Sci. 2018; 85: 70-75.
- 53Hoat D. Investigation on new equiatomic quaternary Heusler compound CoCrIrSi via FP-LAPW calculations. Chem Phys. 2019; 523: 130-137.
- 54Blundell S. Magnetism in Condensed Matter. New York, NY: Oxford University Press; 2001.
10.1093/oso/9780198505921.001.0001 Google Scholar
- 55Zener C. Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys Rev. 1951; 82: 403-405.
- 56Sasioglu E, Sandratskii LM, Bruno P. First-principles calculation of the intersublattice exchange interactions and Curie temperatures of the full Heusler alloysNi2MnX(X=Ga,In,Sn,Sb). Phys Rev B. 2004; 70:024427.
- 57de Gennes PG. Effects of double exchange in magnetic crystals. Phys Rev. 1960; 118: 141-154.
- 58Zhang H, Liu W, Lin T, Wang W, Liu G. Phase stability and magnetic properties of Mn3Z (Z = Al, Ga, In, Tl, Ge, Sn, Pb) Heusler alloys. Appl Sci. 2019; 9: 964.
- 59Jeng HT, Guo GY. First-principles investigations of orbital magnetic moments and electronic structures of the double perovskites Sr2FeMoO6, Sr2FeReO6, and Sr2CrWO6. Phys Rev B. 2003; 67:094438.
- 60Mahmood Q, Hassan M, Ahmad SHA, Bhamu KC, Mahmood A, Ramay SM. Study of electronic, magnetic and thermoelectric properties of AV2O4 (A = Zn, Cd, Hg) by using DFT approach. J Phys Chem Solids. 2019; 128: 283-290.
- 61Murtaza G, Ahmad I. First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M=Cl, Br, I). Phys B Condens Matter. 2011; 406: 3222-3229.
- 62Chettri S, Rai DP, Shankar A, et al. GGA + U and mBJ + U study of the optoelectronic, magnetic and thermoelectric properties of the SmAlO3 compound with spin–orbit coupling. Int J Mod Phys B. 2016; 30:1650078.
- 63Mugnai D, Ranfagni A, Ruggeri R. Observation of superluminal behaviors in wave propagation. Phys Rev Lett. 2000; 84: 4830-4833.
- 64Amin B, Ahmad I, Maqbool M. Conversion of direct to indirect bandgap and optical response of B substituted InN for novel optical devices applications. J Light Wave Technol. 2010; 28: 223.
- 65Heidrich K, Schafer W, Schreiber M, et al. Electronic structure, photoemission spectra, and vacuum-ultraviolet optical spectra of CsPbCl3 and CsPbBr3. Phys Rev B. 1981; 24: 5642-5649.
- 66Souadia Z, Bouhemadou A, Bin-Omran S, Khenata R, Al-Douri Y, Al-Essa S. Electronic structure and optical properties of the dialkali metal monotelluride compounds: ab initio study. J Mol Graph Model. 2019; 90: 77-86.
- 67Goldsmid HJ, Douglas RW. The use of semiconductors in thermoelectric refrigeration. J Appl Phys. 1954; 5: 386.
- 68Tritt TM. Thermoelectric phenomena, materials, and applications. Rev Mater Res. 2011; 41: 433-448.
- 69Ruleovaa P, Drasar C, Lostak P, Li CP, Ballikaya S, Uher C. Thermoelectric properties of Bi2O2Se. Mater Chem Phys. 2010; 119: 2991.
- 70Slack GA. The thermal conductivity of nonmetallic crystals. Solid State Phys. 1979; 34: 1.
- 71Morelli DT, Jovovic V, Heremans JP. Intrinsically minimal thermal conductivity in CubicI−V−VI2Semiconductors. Phys Rev Lett. 2008; 101:035901.
- 72Blanco MA, Francisco E, Luania V. GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput Phys Commun. 2004; 158: 57-72.
- 73Dar SA, Srivastava V, Sakalle UK, Khandy SA. Ab initio investigation on electronic, magnetic, mechanical, and thermodynamic properties of AMO3 (A = Eu, M = Ga, In) Perovskites. J Supercond Nov Magn. 2018; 31: 1549-1558.
- 74Yousaf S, Gupta DC. Investigation of electronic, magnetic and thermoelectric properties of Zr2NiZ (Z = Al, Ga) ferromagnets. Mater Chem Phys. 2017; 192: 33-40.
- 75Ramachandran T, Rajeevan NE, Pradyumnan PP. Enhanced thermoelectric properties of BiCoO3 by nickel substitution. Mater Sci Appl. 2013; 4: 816-821.