Sustainability of the four generations of biofuels – A review
Nurul Syahirah Mat Aron
Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
Search for more papers by this authorKuan Shiong Khoo
Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
Search for more papers by this authorKit Wayne Chew
School of Energy and Chemical Engineering, Xiamen University Malaysia, Sunsuria, Malaysia
Search for more papers by this authorCorresponding Author
Pau Loke Show
Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
Correspondence
Pau L. Show, Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
Email: [email protected]
The H. P. Nguyen, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
Email: [email protected];
Search for more papers by this authorWei-Hsin Chen
Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan
Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan
Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan
Search for more papers by this authorCorresponding Author
The Hong Phong Nguyen
Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
Correspondence
Pau L. Show, Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
Email: [email protected]
The H. P. Nguyen, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
Email: [email protected];
Search for more papers by this authorNurul Syahirah Mat Aron
Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
Search for more papers by this authorKuan Shiong Khoo
Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
Search for more papers by this authorKit Wayne Chew
School of Energy and Chemical Engineering, Xiamen University Malaysia, Sunsuria, Malaysia
Search for more papers by this authorCorresponding Author
Pau Loke Show
Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
Correspondence
Pau L. Show, Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
Email: [email protected]
The H. P. Nguyen, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
Email: [email protected];
Search for more papers by this authorWei-Hsin Chen
Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan
Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan
Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan
Search for more papers by this authorCorresponding Author
The Hong Phong Nguyen
Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
Correspondence
Pau L. Show, Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
Email: [email protected]
The H. P. Nguyen, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
Email: [email protected];
Search for more papers by this authorFunding information: Fundamental Research Grant Scheme, Malaysia, Grant/Award Number: FRGS/1/2019/STG05/UNIM/02/2
Summary
Biofuel has emerged as an alternative source of energy to reduce the emissions of greenhouse gases in the atmosphere and combat global warming. Biofuels are classified into first, second, third and fourth generations. Each of the biofuel generations aims to meet the global energy demand while minimizing environmental impacts. Sustainability is defined as meeting the needs of the current generations without jeopardizing the needs of future generations. The aim of sustainability is to ensure continuous growth of the economy while protecting the environment and societal needs. Thus, this paper aims to evaluate the sustainability of these four generations of biofuels. The objectives are to compare the production of biofuel, the net greenhouse gases emissions, and energy efficiency. This study is important in providing information for the policymakers and researchers in the decision-making for the future development of green energy. Each of the biofuel generations shows different benefits and drawbacks. From this study, we conclude that the first generation biofuel has the highest biofuel production and energy efficiency, but is less effective in meeting the goal of reducing the greenhouse gases emission. The third generation biofuel shows the lowest net greenhouse gases emissions, allowing the reduction of greenhouse gases in the atmosphere. However, the energy required for the processing of the third generation biofuel is higher and, this makes it less environmentally friendly as fossil fuels are used to generate electricity. The third and fourth generation feedstocks are the potential sustainable source for the future production of biofuel. However, more studies need to be done to find an alternative low cost for biofuel production while increasing energy efficiency.
REFERENCES
- 1Li P, Sakuragi K, Makino H. Extraction techniques in sustainable biofuel production: A concise review. Fuel Process Technol. 2019; 193: 295-303. https://doi.org/10.1016/j.fuproc.2019.05.009.
- 2Chew KW, Chia SR, Show PL, Yap YJ, Ling TC, Chang JS. Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: a review. J Taiwan Inst Chem Eng. 2018; 91: 332-344. https://doi.org/10.1016/j.jtice.2018.05.039.
- 3Khoo KS, Chew KW, Yew GY, et al. Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresour Technol. 2020; 304:122996. https://doi.org/10.1016/j.biortech.2020.122996.
- 4Correa DF, Beyer HL, Fargione JE, et al. Towards the implementation of sustainable biofuel production systems. Renewable Sustainable Energy Rev. 2019; 107: 250-263. https://doi.org/10.1016/j.rser.2019.03.005.
- 5Alalwan HA, Alminshid AH, Aljaafari HAS. Promising evolution of biofuel generations. Subject review. Renewable Energy Focus. 2019; 28: 127-139. https://doi.org/10.1016/j.ref.2018.12.006.
10.1016/j.ref.2018.12.006 Google Scholar
- 6Bhargavi G, Nageswara Rao P, Renganathan S. Review on the extraction methods of crude oil from all generation biofuels in last few decades. IOP Conf Ser Mater Sci Eng. 2018; 330(1):012024. https://doi.org/10.1088/1757-899X/330/1/012024.
10.1088/1757-899X/330/1/012024 Google Scholar
- 7Rodionova MV, Poudyal RS, Tiwari I, et al. Biofuel production: challenges and opportunities. Int J Hydrogen Energy. 2017; 42(12): 8450-8461. https://doi.org/10.1016/j.ijhydene.2016.11.125.
- 8Paschalidou A, Tsatiris M, Kitikidou K. Energy crops for biofuel production or for food? - SWOT analysis (case study: Greece). Renewable Energy. 2016; 93: 636-647. https://doi.org/10.1016/j.renene.2016.03.040.
- 9Srivastava N, Kharwar RK, Mishra PK. Cost economy analysis of biomass-based biofuel production. In: Cellulose to Cellulase: Strategies to Improve Biofuel Production. Varanasi; 2019.
- 10Saini JK, Saini R, Tewari L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3. Biotech. 2015; 5(4): 337-353. https://doi.org/10.1007/s13205-014-0246-5.
- 11Chew KW, Chia SR, Show PL, Ling TC, Arya SS, Chang JS. Food waste compost as an organic nutrient source for the cultivation of Chlorella vulgaris. Bioresour Technol. 2018; 267: 356-362. https://doi.org/10.1016/j.biortech.2018.07.069.
- 12Chia SR, Ong HC, Chew KW, et al. Sustainable approaches for algae utilisation in bioenergy production. Renewable Energy. 2018; 129: 838-852. https://doi.org/10.1016/j.renene.2017.04.001.
- 13Pierobon SC, Cheng X, Graham PJ, Nguyen B, Karakolis EG, Sinton D. Emerging microalgae technology: a review. Sustainable Energy Fuels. 2018; 2(1): 13-38. https://doi.org/10.1039/c7se00236j.
- 14Khoo KS, Lee SY, Ooi CW, et al. Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis. Bioresour Technol. 2019; 288:121606. https://doi.org/10.1016/j.biortech.2019.121606.
- 15Chew KW, Yap JY, Show PL, et al. Microalgae biorefinery: high value products perspectives. Bioresour Technol. 2017; 229: 53-62. https://doi.org/10.1016/j.biortech.2017.01.006.
- 16Wang Y, Ho SH, Cheng CL, et al. Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresour Technol. 2016; 222: 485-497. https://doi.org/10.1016/j.biortech.2016.09.106.
- 17Shah SH, Raja IA, Rizwan M, et al. Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan. Renewable Sustainable Energy Rev. 2018; 81: 76-92. https://doi.org/10.1016/j.rser.2017.07.044.
- 18Bennion EP, Ginosar DM, Moses J, Agblevor F, Quinn JC. Lifecycle assessment of microalgae to biofuel: comparison of thermochemical processing pathways. Appl Energy. 2015; 154: 1062-1071. https://doi.org/10.1016/j.apenergy.2014.12.009.
- 19Dasan YK, Lam MK, Yusup S, Lim JW, Lee KT. Life cycle evaluation of microalgae biofuels production: effect of cultivation system on energy, carbon emission and cost balance analysis. Sci Total Environ. 2019; 688: 112-128. https://doi.org/10.1016/j.scitotenv.2019.06.181.
- 20Zhu B, Chen G, Cao X, Wei D. Molecular characterization of CO2 sequestration and assimilation in microalgae and its biotechnological applications. Bioresour Technol. 2017; 244: 1207-1215. https://doi.org/10.1016/j.biortech.2017.05.199.
- 21Abdullah B, Syed Muhammad SAF ad, Shokravi Z, et al. Fourth generation biofuel: a review on risks and mitigation strategies. Renewable Sustainable Energy Rev 2019; 107: 37–50. doi:https://doi.org/10.1016/j.rser.2019.02.018
- 22Ng IS, Tan SI, Kao PH, Chang YK, Chang JS. Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals. Biotechnol J. 2017; 12(10): 1-13. https://doi.org/10.1002/biot.201600644.
- 23Merchant SS, Prochnik SE, Vallon O, et al. The Chlamydomonas genome reveals the evolution of key. Natl Institutes Heal. 2007; 318(5848): 245-250.
- 24Blanc G, Duncan G, Agarkova I, et al. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell. 2010; 22(9): 2943-2955. https://doi.org/10.1105/tpc.110.076406.
- 25Arriola MB, Velmurugan N, Zhang Y, Plunkett MH, Hondzo H, Barney BM. Genome sequences of Chlorella sorokiniana UTEX 1602 and Micractinium conductrix SAG 241.80: implications to maltose excretion by a green alga. Plant J. 2018; 93(3): 566-586. https://doi.org/10.1111/tpj.13789.
- 26Lin WR, Tan SI, Hsiang CC, Sung PK, Ng IS. Challenges and opportunity of recent genome editing and multi-omics in cyanobacteria and microalgae for biorefinery. Bioresour Technol. 2019; 291:121932. https://doi.org/10.1016/j.biortech.2019.121932.
- 27 United Nations (UN). Sustainability|Academic Impact. Retrieved on 9 April 2020 from https://academicimpact.un.org/content/sustainability. Published 1987.
- 28Ivković AF, Ham M, Mijoč J. Measuring objective well-being and sustainable development management. J Knowl Manag Econ Inf Technol. 2014; 4(2): 1-29.
- 29Viesturs D, Melece L. Advantages and disadvantages of biofuels: observations in Latvia. Eng Rural Dev. 2014; 13: 210-215.
- 30Hossain Z, Johnson EN, Wang L, Blackshaw RE, Cutforth H, Gan Y. Plant establishment, yield and yield components of Brassicaceae oilseeds as potential biofuel feedstock. Ind Crops Prod. 2019; 141:111800. https://doi.org/10.1016/j.indcrop.2019.111800.
- 31Halder P, Azad K, Shah S, Sarker E. Prospects and Technological Advancement of Cellulosic Bioethanol Ecofuel Production. United Kingdom: Woodhead Publishing; 2019: 211–236. https://doi.org/10.1016/b978-0-08-102728-8.00008-5
- 32Cheroennet N, Suwanmanee U. Net energy gain and water footprint of corn ethanol production in Thailand. Energy Procedia. 2017; 118: 15-20. https://doi.org/10.1016/j.egypro.2017.07.003.
10.1016/j.egypro.2017.07.003 Google Scholar
- 33Borzecka-Walker M, Faber A, Pudelko R, Kozyra J, Syp A, Borek R. Life cycle assessment (LCA) of crops for energy production. J Food, Agric Environ. 2011; 9(3-4): 698-700.
- 34Bicalho T, Sauer I, Patiño-Echeverri D. Quality of data for estimating GHG emissions in biofuel regulations is unknown: a review of default values related to sugarcane and corn ethanol. J Clean Prod. 2019; 239:117903. https://doi.org/10.1016/j.jclepro.2019.117903.
- 35Wang M, Han J, Dunn JB, Cai H, Elgowainy A. Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Effic Sustain Biofuel Prod Environ Land-Use Res. 2015; 7: 249-280. https://doi.org/10.1088/1748-9326/7/4/045905.
- 36Pereira LG, Cavalett O, Bonomi A, Zhang Y, Warner E, Chum HL. Comparison of biofuel life-cycle GHG emissions assessment tools: the case studies of ethanol produced from sugarcane, corn, and wheat. Renewable Sustainable Energy Rev. 2019; 110: 1-12. https://doi.org/10.1016/j.rser.2019.04.043.
- 37Garlapati VK, Tewari S, Ganguly R. Life Cycle Assessment of First-, Second-Generation, and Microalgae Biofuels. United Kindom: Woodhead Publishing; 2019: 355–371. https://doi.org/10.1016/b978-0-12-817937-6.00019-9
- 38O'Connell A, Kousoulidou M, Lonza L, Weindorf W. Considerations on GHG emissions and energy balances of promising aviation biofuel pathways. Renewable Sustainable Energy Rev. 2019; 101: 504-515. https://doi.org/10.1016/j.rser.2018.11.033.
- 39Dias De Oliveira ME, VB E, Rykiel EJ. Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. Bioscience. 2005; 55(7): 593. https://doi.org/10.1641/0006-3568(2005)055[0593:eafecd]2.0.co;2.
- 40Cai H, Dunn JB, Wang Z, Han J, Wang MQ. Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States. Biotechnol Biofuels. 2013; 6(1): 1-15. https://doi.org/10.1186/1754-6834-6-141.
- 41Carmo JB, do Filoso S, Zotelli LC, et al. Infield greenhouse gas emissions from sugarcane soils in Brazil: effects from synthetic and organic fertilizer application and crop trash accumulation. GCB Bioenergy. 2013; 5(3): 267-280. https://doi.org/10.1111/j.1757-1707.2012.01199.x.
- 42Crutzen PJ, Mosier AR, Smith KA, Winiwarter W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys. 2008; 8(2): 389-395. https://doi.org/10.5194/acp-8-389-2008.
- 43Sanz Requena JF, Guimaraes AC, Quirós Alpera S, et al. Life cycle assessment (LCA) of the biofuel production process from sunflower oil, rapeseed oil and soybean oil. Fuel Process Technol. 2011; 92(2): 190-199. https://doi.org/10.1016/j.fuproc.2010.03.004.
- 44Anna Jung, Philipp Dörrenberg, Anna Rauch, Michael Thöne. Biofuels – At what cost? Government Support for Ethanol and Biodiesel in the European Union – 2010 Update; 2010.
- 45Koplow D. Biofuels - At what cost ? Government Support for Ethanol and Biodiesel in the European Union; 2007. Retrieved from http://www.globalsubsidies.org/files/assets/Final_Malaysia_2.pdf
- 46Grafton RQ, Kompas T, Van Long N, To H. US biofuels subsidies and CO2 emissions: an empirical test for a weak and a strong green paradox. Energy Policy. 2014; 68: 550-555. https://doi.org/10.1016/j.enpol.2013.11.006.
- 47Börjesson P, Tufvesson LM. Agricultural crop-based biofuels - resource efficiency and environmental performance including direct land use changes. J Clean Prod. 2011; 19(2-3): 108-120. https://doi.org/10.1016/j.jclepro.2010.01.001.
- 48Edwards R, Mahieu V, Griesemann JC, Larivé JF, Rickeard DJ. Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context.; 2019. https://doi.org/10.4271/2004-01-1924
- 49Unnasch S, Pont J. Full fuel cycle assessment well to tank energy inputs, emissions, and water impacts; 2007. https://doi.org/10.1254/jphs.FPE04001X
- 50Ayodele BV, Alsaffar MA, Mustapa SI. An overview of integration opportunities for sustainable bioethanol production from first- and second-generation sugar-based feedstocks. J Clean Prod. 2019; 245:118857. https://doi.org/10.1016/j.jclepro.2019.118857.
- 51The United Nations. Population|United Nations.
- 52Haji Esmaeili SA, Szmerekovsky J, Sobhani A, Dybing A, Peterson TO. Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers. Energy Policy. 2020; 138:111222. https://doi.org/10.1016/j.enpol.2019.111222.
- 53Rahim AHA, Khoo KS, Yunus NM, Hamzah WSW. Ether-functionalized ionic liquids as solvent for Gigantochloa scortechini dissolution. AIP Conf Proc. 2019; 2157: 020025-1–020025-6. https://doi.org/10.1063/1.5126560.
- 54Stark A. Ionic liquids in the biorefinery: a critical assessment of their potential. Energy Environ Sci. 2011; 4(1): 19-32. https://doi.org/10.1039/c0ee00246a.
- 55Perlack R. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: the Technical Feasibility of a Billion-Ton Annual Supply. United States: Oak Ridge National Laboratory; 2005.
- 56Hassan SS, Williams GA, Jaiswal AK. Erratum: Lignocellulosic Biorefineries in Europe: Current State and Prospects. Trends Biotechnol. 2019; 37(7): 789. https://doi.org/10.1016/j.tibtech.2019.03.001.
- 57Fisher T, Hajaligol M, Waymack B, Kellogg D. Pyrolysis behavior and kinetics of biomass derived materials. J Anal Appl Pyrolysis. 2002; 62(2): 331-349. https://doi.org/10.1016/S0165-2370(01)00129-2.
- 58Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007; 86(12–13): 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013.
- 59Fahmi R, Bridgwater AV, Donnison I, Yates N, Jones JM. The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel. 2008; 87(7): 1230-1240. https://doi.org/10.1016/j.fuel.2007.07.026.
- 60Hamelinck CN, Van Hooijdonk G, Faaij APC. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy. 2005; 28(4): 384-410. https://doi.org/10.1016/j.biombioe.2004.09.002.
- 61Balan V. Current challenges in commercially producing biofuels from Lignocellulosic biomass. ISRN Biotechnol. 2014; 2014(i): 1-31. https://doi.org/10.1155/2014/463074.
10.1155/2014/463074 Google Scholar
- 62Cardona CA, Quintero JA, Paz IC. Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour Technol. 2010; 101(13): 4754-4766. https://doi.org/10.1016/j.biortech.2009.10.097.
- 63Sánchez ÓJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol. 2008; 99(13): 5270-5295. https://doi.org/10.1016/j.biortech.2007.11.013.
- 64da Silva ARG, Torres Ortega CE, Rong BG. Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production. Bioresour Technol. 2016; 218: 561-570. https://doi.org/10.1016/j.biortech.2016.07.007.
- 65Zhang H, Zhang P, Ye J, et al. Comparison of various pretreatments for ethanol production enhancement from solid residue after rumen fluid digestion of rice straw. Bioresour Technol. 2018; 247: 147-156. https://doi.org/10.1016/j.biortech.2017.09.065.
- 66Rooni V, Raud M, Kikas T. The freezing pre-treatment of lignocellulosic material: a cheap alternative for Nordic countries. Energy. 2017; 139: 1-7. https://doi.org/10.1016/j.energy.2017.07.146.
- 67Nikolić S, Mojović L, Rakin M, Pejin D, Pejin J. Utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn. Clean Technol Environ Policy. 2011; 13(4): 587-594. https://doi.org/10.1007/s10098-011-0366-0.
- 68Cardona E, Llano B, Peñuela M, Peña J, Rios LA. Liquid-hot-water pretreatment of palm-oil residues for ethanol production: an economic approach to the selection of the processing conditions. Energy. 2018; 160: 441-451. https://doi.org/10.1016/j.energy.2018.07.045.
- 69Arora A, Priya S, Sharma P, Sharma S, Nain L. Evaluating biological pretreatment as a feasible methodology for ethanol production from paddy straw. Biocatal Agric Biotechnol. 2016; 8: 66-72. https://doi.org/10.1016/j.bcab.2016.08.006.
- 70Wu XF, Yin SS, Zhou Q, Li MF, Peng F, Xiao X. Subcritical liquefaction of lignocellulose for the production of bio-oils in ethanol/water system. Renewable Energy. 2019; 136: 865-872. https://doi.org/10.1016/j.renene.2019.01.041.
- 71Zabed H, Sahu JN, Boyce AN, Faruq G. Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renewable Sustainable Energy Rev. 2016; 66: 751-774. https://doi.org/10.1016/j.rser.2016.08.038.
- 72Raja Sathendra E, Baskar G, Praveenkumar R, Gnansounou E. Bioethanol production from palm wood using Trichoderma reesei and Kluveromyces marxianus. Bioresour Technol. 2019; 271: 345-352. https://doi.org/10.1016/j.biortech.2018.09.134.
- 73Walter A, Ensinas AV. Combined production of second-generation biofuels and electricity from sugarcane residues. Energy. 2010; 35(2): 874-879. https://doi.org/10.1016/j.energy.2009.07.032.
- 74Petersen AM, Melamu R, Knoetze JH, Görgens JF. Comparison of second-generation processes for the conversion of sugarcane bagasse to liquid biofuels in terms of energy efficiency, pinch point analysis and life cycle analysis. Energy Convers Manage. 2015; 91: 292-301. https://doi.org/10.1016/j.enconman.2014.12.002.
- 75Anex RP, Aden A, Kazi FK, et al. Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel. 2010; 89(Suppl 1):S29–S35. https://doi.org/10.1016/j.fuel.2010.07.015.
- 76Gnansounou E. Production and use of lignocellulosic bioethanol in Europe: current situation and perspectives. Bioresour Technol. 2010; 101(13): 4842-4850. https://doi.org/10.1016/j.biortech.2010.02.002.
- 77Nanda S, Azargohar R, Dalai AK, Kozinski JA. An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew Sustain Energy Rev. 2015; 50: 925-941. https://doi.org/10.1016/j.rser.2015.05.058.
- 78Gabrielle B, Gagnaire N. Life-cycle assessment of straw use in bio-ethanol production: a case study based on biophysical modelling. Biomass Bioenergy. 2008; 32(5): 431-441. https://doi.org/10.1016/j.biombioe.2007.10.017.
- 79Shafie SM, Mahlia TMI, Masjuki HH. Life cycle assessment of rice straw co-firing with coal power generation in Malaysia. Energy. 2013; 57: 284-294. https://doi.org/10.1016/j.energy.2013.06.002.
- 80Mann M, Spath P. A life cycle assessment of biomass cofiring in a coal-fired power plant. Clean Prod Process. 2001; 3(2): 81-91. https://doi.org/10.1007/s100980100109.
10.1007/s100980100109 Google Scholar
- 81Sebastián F, Royo J, Gómez M. Cofiring versus biomass-fired power plants: GHG (greenhouse gases) emissions savings comparison by means of LCA (life cycle assessment) methodology. Energy. 2011; 36(4): 2029-2037. https://doi.org/10.1016/j.energy.2010.06.003.
- 82Kauffman N, Hayes D, Brown R. A life cycle assessment of advanced biofuel production from a hectare of corn. Fuel. 2011; 90(11): 3306-3314. https://doi.org/10.1016/j.fuel.2011.06.031.
- 83Han J, Elgowainy A, Dunn JB, Wang MQ. Life cycle analysis of fuel production from fast pyrolysis of biomass. Bioresour Technol. 2013; 133: 421-428. https://doi.org/10.1016/j.biortech.2013.01.141.
- 84Iribarren D, Peters JF, Dufour J. Life cycle assessment of transportation fuels from biomass pyrolysis. Fuel. 2012; 97: 812-821. https://doi.org/10.1016/j.fuel.2012.02.053.
- 85Hsu DD. Life cycle assessment of gasoline and diesel produced via fast pyrolysis and hydroprocessing. Biomass Bioenergy. 2012; 45: 41-47. https://doi.org/10.1016/j.biombioe.2012.05.019.
- 86Guest G, Bright RM, Cherubini F, Michelsen O, Strømman AH. Life cycle assessment of biomass-based combined heat and power plants: centralized versus decentralized deployment strategies. J Ind Ecol. 2011; 15(6): 908-921. https://doi.org/10.1111/j.1530-9290.2011.00375.x.
- 87Kimming M, Sundberg C, Nordberg Å, et al. Biomass from agriculture in small-scale combined heat and power plants - a comparative life cycle assessment. Biomass Bioenergy. 2011; 35(4): 1572-1581. https://doi.org/10.1016/j.biombioe.2010.12.027.
- 88Solli C, Reenaas M, Strømman AH, Hertwich EG. Life cycle assessment of wood-based heating in Norway. Int J Life Cycle Assess. 2009; 14(6): 517-528. https://doi.org/10.1007/s11367-009-0086-4.
- 89Shafie SM, Mahlia TMI, Masjuki HH, Rismanchi B. Life cycle assessment (LCA) of electricity generation from rice husk in Malaysia. Energy Procedia. 2012; 14: 499-504. https://doi.org/10.1016/j.egypro.2011.12.965.
- 90Thakur A, Canter CE, Kumar A. Life-cycle energy and emission analysis of power generation from forest biomass. Appl Energy. 2014; 128: 246-253. https://doi.org/10.1016/j.apenergy.2014.04.085.
- 91Bhatia SK, Jagtap SS, Bedekar AA, et al. Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresour Technol. 2020; 300:122724. https://doi.org/10.1016/j.biortech.2019.122724.
- 92Sankaran R, Parra Cruz RA, Pakalapati H, et al. Recent advances in the pretreatment of microalgal and lignocellulosic biomass: a comprehensive review. Bioresour Technol. 2020; 298:122476. https://doi.org/10.1016/j.biortech.2019.122476.
- 93Ali N, Zhang Q, Liu ZY, Li FL, Lu M, Fang XC. Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products. Appl Microbiol Biotechnol. 2020; 104(2): 455-473. https://doi.org/10.1007/s00253-019-10158-w.
- 94Carriquiry MA, Du X, Timilsina GR. Second generation biofuels: economics and policies. Energy Policy. 2011; 39(7): 4222-4234. https://doi.org/10.1016/j.enpol.2011.04.036.
- 95Cheah WY, Sankaran R, Show PL, et al. Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Res J. 2020; 7(1): 1115-1127. https://doi.org/10.18331/brj2020.7.1.4.
- 96Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW. The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng. 2012; 109(4): 1083-1087. https://doi.org/10.1002/bit.24370.
- 97Kim Y, Ximenes E, Mosier NS, Ladisch MR. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme Microb Technol. 2011; 48(4–5): 408-415. https://doi.org/10.1016/j.enzmictec.2011.01.007.
- 98Li C, Cheng G, Balan V, et al. Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn Stover. Bioresour Technol. 2011; 102(13): 6928-6936. https://doi.org/10.1016/j.biortech.2011.04.005.
- 99Tang DYY, Khoo KS, Chew KW, Tao Y, Ho SH, Show PL. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour Technol. 2020; 304:122997. https://doi.org/10.1016/j.biortech.2020.122997.
- 100Yi-Feng C, Wu Q. Production of biodiesel from algal biomass: current perspectives and future. Biofuels. 2011; 8: 399-413. https://doi.org/10.1016/B978-0-12-385099-7.00018-8.
10.1016/B978-0-12-385099-7.00018-8 Google Scholar
- 101Metsoviti MN, Papapolymerou G, Karapanagiotidis IT, Katsoulas N. Comparison of growth rate and nutrient content of five microalgae species cultivated in greenhouses. Plan Theory. 2019; 8(8): 1-13. https://doi.org/10.3390/plants8080279.
- 102Shah SH, Raja IA, Mahmood Q, Pervez A. Improvement in lipids extraction processes for biodiesel production from wet microalgal pellets grown on diammonium phosphate and sodium bicarbonate combinations. Bioresour Technol. 2016; 214: 199-209. https://doi.org/10.1016/j.biortech.2016.04.036.
- 103Hoh D, Watson S, Kan E. Algal biofilm reactors for integrated wastewater treatment and biofuel production: a review. Chem Eng J. 2016; 287: 466-473. https://doi.org/10.1016/j.cej.2015.11.062.
- 104Chowdhury H, Loganathan B. Third-generation biofuels from microalgae: a review. Curr Opin Green Sustain Chem. 2019; 20: 39-44. https://doi.org/10.1016/j.cogsc.2019.09.003.
- 105Bhatnagar A, Chinnasamy S, Singh M, Das KC. Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy. 2011; 88(10): 3425-3431. https://doi.org/10.1016/j.apenergy.2010.12.064.
- 106Faried M, Samer M, Abdelsalam E, Yousef RS, Attia YA, Ali AS. Biodiesel production from microalgae: processes, technologies and recent advancements. Renewable Sustainable Energy Rev. 2017; 79: 893-913. https://doi.org/10.1016/j.rser.2017.05.199.
- 107Abu-Ghosh S, Fixler D, Dubinsky Z, Iluz D. Energy-input analysis of the life-cycle of microalgal cultivation systems and best scenario for oil-rich biomass production. Appl Energy. 2015; 154: 1082-1088. https://doi.org/10.1016/j.apenergy.2015.02.086.
- 108Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG. Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuels. 2010; 24(7): 4062-4077. https://doi.org/10.1021/ef1003123.
- 109Sukenik A, Carmeli Y. Sukenik1989.Pdf. 1989.
- 110Ruangsomboon S. Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresour Technol. 2012; 109: 261-265. https://doi.org/10.1016/j.biortech.2011.07.025.
- 111George B, Pancha I, Desai C, et al. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus - a potential strain for bio-fuel production. Bioresour Technol. 2014; 171: 367-374. https://doi.org/10.1016/j.biortech.2014.08.086.
- 112Tsita KG, Kiartzis SJ, Ntavos NK, Pilavachi PA. Next generation biofuels derived from thermal and chemical conversion of the Greek transport sector. Therm Sci Eng Prog. 2020; 17:100387. https://doi.org/10.1016/j.tsep.2019.100387.
10.1016/j.tsep.2019.100387 Google Scholar
- 113Sun CH, Fu Q, Liao Q, et al. Life-cycle assessment of biofuel production from microalgae via various bioenergy conversion systems. Energy. 2019; 171: 1033-1045. https://doi.org/10.1016/j.energy.2019.01.074.
- 114Batan L, Quinn J, Willson B, Bradley T. Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ Sci Technol. 2010; 44(20): 7975-7980. https://doi.org/10.1021/es102052y.
- 115Frank ED, Elgowainy A, Han J, Wang Z. Life cycle comparison of hydrothermal liquefaction and lipid extraction pathways to renewable diesel from algae. Mitig Adapt Strat Glob Chang. 2013; 18(1): 137-158. https://doi.org/10.1007/s11027-012-9395-1.
- 116Resurreccion EP, Colosi LM, White MA, Clarens AF. Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach. Bioresour Technol. 2012; 126: 298-306. https://doi.org/10.1016/j.biortech.2012.09.038.
- 117Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol. 2010; 101(4): 1406-1413. https://doi.org/10.1016/j.biortech.2009.09.038.
- 118Sturm BSM, Lamer SL. An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energy. 2011; 88(10): 3499-3506. https://doi.org/10.1016/j.apenergy.2010.12.056.
- 119Togarcheti SC, Kumar MM, Chauhan VS, Mukherji S, Ravi S, Mudliar SN. Life cycle assessment of microalgae based biodiesel production to evaluate the impact of biomass productivity and energy source. Resour Conserv Recycl. 2017; 122: 286-294. https://doi.org/10.1016/j.resconrec.2017.01.008.
- 120Khoo HH, Sharratt PN, Das P, Balasubramanian RK, Naraharisetti PK, Shaik S. Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons. Bioresour Technol. 2011; 102(10): 5800-5807. https://doi.org/10.1016/j.biortech.2011.02.055.
- 121Vassilev SV, Vassileva CG. Composition, properties and challenges of algae biomass for biofuel application: an overview. Fuel. 2016; 181: 1-33. https://doi.org/10.1016/j.fuel.2016.04.106.
- 122Ahmad I, Sharma AK, Daniell H, Kumar S. Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2. Plant Biotechnol J. 2015; 13(4): 540-550. https://doi.org/10.1111/pbi.12278.
- 123Deng X, Cai J, Li Y, Fei X. Expression and knockdown of the PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii. Biotechnol Lett. 2014; 36(11): 2199-2208. https://doi.org/10.1007/s10529-014-1593-3.
- 124Niu YF, Zhang MH, Li DW, et al. Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs. 2013; 11(11): 4558-4569. https://doi.org/10.3390/md11114558.
- 125Yang J, Pan Y, Bowler C, Zhang L, Hu H. Knockdown of phosphoenolpyruvate carboxykinase increases carbon flux to lipid synthesis in Phaeodactylum tricornutum. Algal Res. 2016; 15: 50-58. https://doi.org/10.1016/j.algal.2016.02.004.
- 126Beckmann J, Lehr F, Finazzi G, et al. Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol. 2009; 142(1): 70-77. https://doi.org/10.1016/j.jbiotec.2009.02.015.
- 127Chen PH, Liu HL, Chen YJ, et al. Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria. Energ Environ Sci. 2012; 5(8): 8318-8327. https://doi.org/10.1039/c2ee21124f.
- 128Beacham TA, Sweet JB, Allen MJ. Large scale cultivation of genetically modified microalgae: a new era for environmental risk assessment. Algal Res. 2017; 25: 90-100. https://doi.org/10.1016/j.algal.2017.04.028.
10.1016/j.algal.2017.04.028 Google Scholar
- 129Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP. Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manage. 2016; 181: 817-831. https://doi.org/10.1016/j.jenvman.2016.06.059.
- 130Leong WH, Azella Zaine SN, Ho YC, et al. Impact of various microalgal-bacterial populations on municipal wastewater bioremediation and its energy feasibility for lipid-based biofuel production. J Environ Manage. 2019; 249:109384. https://doi.org/10.1016/j.jenvman.2019.109384.
- 131Sikarwar VS, Zhao M, Fennell PS, Shah N, Anthony EJ. Progress in biofuel production from gasification. Prog Energy Combust Sci. 2017; 61: 189-248. https://doi.org/10.1016/j.pecs.2017.04.001.
- 132Adeniyi OM, Azimov U, Burluka A. Algae biofuel: current status and future applications. Renewable Sustainable Energy Rev. 2018; 90: 316-335. https://doi.org/10.1016/j.rser.2018.03.067.
- 133Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S. Biofuels from algae: challenges and potential. Biofuels. 2010; 1(5): 763-784. https://doi.org/10.4155/bfs.10.44.
- 134Charles C, Gerasimchuk I, Bridle R, Moerenhout T, Asmelash E, Laan T. Biofuels—at What cost? A review of costs and benefits of EU biofuel policies. Int Inst Sustain Dev. 2013; April 23-25.
- 135Zhao X, Brown TR, Tyner WE. Stochastic techno-economic evaluation of cellulosic biofuel pathways. Bioresour Technol. 2015; 198: 755-763. https://doi.org/10.1016/j.biortech.2015.09.056.
- 136Witcover J, Williams RB. Comparison of “advanced” biofuel cost estimates: trends during rollout of low carbon fuel policies. Transp Res Part D Transp Environ. 2020; 79:102211. https://doi.org/10.1016/j.trd.2019.102211.
- 137Katiyar R, Bharti RK, Gurjar BR, Kumar A, Biswas S, Pruthi V. Utilization of de-oiled algal biomass for enhancing vehicular quality biodiesel production from chlorella sp. in mixotrophic cultivation systems. Renewable Energy. 2018; 122: 80-88. https://doi.org/10.1016/j.renene.2018.01.037.
- 138 United Nations. Global Goals|Policy and advocacy.
- 139 United Nations. Energy - United Nations Sustainable Development.
- 140Buţurcă R, Gasol CM, Gabarrell X, Scarpete D. Comparative life cycle assessment of rapeseed oil and biodiesel from winter rape produced in Romania. World Acad Sci Eng Technol. 2013; 80(8): 865-870.
- 141 Environmental and Energy Study Institute (EESI). Energy Efficiency|EESI. Retrieved on 22 February 2020 from https://www.eesi.org/topics/energy-efficiency/description
- 142Searchinger T, Heimlich R, Houghton RA, et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 2008; 319: 1238-1240. https://doi.org/10.1126/science.1151861.
- 143Snow AA, Smith VH. Genetically engineered algae for biofuels: a key role for ecologists. Bioscience. 2012; 62(8): 765-768. https://doi.org/10.1525/bio.2012.62.8.9.
- 144Szyjka SJ, Mandal S, Schoepp NG, et al. Evaluation of phenotype stability and ecological risk of a genetically engineered alga in open pond production. Algal Res. 2017; 24: 378-386. https://doi.org/10.1016/j.algal.2017.04.006.
10.1016/j.algal.2017.04.006 Google Scholar