Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy
Corresponding Author
Seyed Ehsan Hosseini
Combustion and Sustainable Energy Laboratory (ComSEL), Department of Mechanical Engineering, Arkansas Tech University, Russellville, Arkansas
Correspondence
Seyed Ehsan Hosseini, Combustion and Sustainable Energy Laboratory (ComSEL), Department of Mechanical, Engineering, Arkansas Tech University, 1811 N Boulder Ave, Russellville, AR 72801.
Email: [email protected], [email protected]
Search for more papers by this authorMazlan Abdul Wahid
High Speed Reacting Flow Laboratory, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
Search for more papers by this authorCorresponding Author
Seyed Ehsan Hosseini
Combustion and Sustainable Energy Laboratory (ComSEL), Department of Mechanical Engineering, Arkansas Tech University, Russellville, Arkansas
Correspondence
Seyed Ehsan Hosseini, Combustion and Sustainable Energy Laboratory (ComSEL), Department of Mechanical, Engineering, Arkansas Tech University, 1811 N Boulder Ave, Russellville, AR 72801.
Email: [email protected], [email protected]
Search for more papers by this authorMazlan Abdul Wahid
High Speed Reacting Flow Laboratory, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
Search for more papers by this authorSummary
Solar energy is going to play a crucial role in the future energy scenario of the world that conducts interests to solar-to-hydrogen as a means of achieving a clean energy carrier. Hydrogen is a sustainable energy carrier, capable of substituting fossil fuels and decreasing carbon dioxide (CO2) emission to save the world from global warming. Hydrogen production from ubiquitous sustainable solar energy and an abundantly available water is an environmentally friendly solution for globally increasing energy demands and ensures long-term energy security. Among various solar hydrogen production routes, this study concentrates on solar thermolysis, solar thermal hydrogen via electrolysis, thermochemical water splitting, fossil fuels decarbonization, and photovoltaic-based hydrogen production with special focus on the concentrated photovoltaic (CPV) system. Energy management and thermodynamic analysis of CPV-based hydrogen production as the near-term sustainable option are developed. The capability of three electrolysis systems including alkaline water electrolysis (AWE), polymer electrolyte membrane electrolysis, and solid oxide electrolysis for coupling to solar systems for H2 production is discussed. Since the cost of solar hydrogen has a very large range because of the various employed technologies, the challenges, pros and cons of the different methods, and the commercialization processes are also noticed. Among three electrolysis technologies considered for postulated solar hydrogen economy, AWE is found the most mature to integrate with the CPV system. Although substantial progresses have been made in solar hydrogen production technologies, the review indicates that these systems require further maturation to emulate the produced grid-based hydrogen.
REFERENCES
- 1Hosseini SE, Wahid MA, Aghili N. The scenario of greenhouse gases reduction in Malaysia. Renew Sustain Energy Rev. 2013; 28: 400-409.
- 2Hwang J-Y, Shi S, Sun X, Zhang Z, Wen C. Electric charge and hydrogen storage. Int J Energ Res. 2013; 37(7): 741-745.
- 3Yi H, Yan M, Huang D, et al. Synergistic effect of artificial enzyme and 2D nano-structured Bi2WO6 for eco-friendly and efficient biomimetic photocatalysis. Appl Catal Environ. 2019; 250: 52-62.
- 4Hosseini SE, Wahid MA. Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew Sustain Energy Rev. 2016; 57: 850-866.
- 5Qin L, Zeng G, Lai C, et al. A visual application of gold nanoparticles: simple, reliable and sensitive detection of kanamycin based on hydrogen-bonding recognition. Sens Actuators B. 2017; 243: 946-954.
- 6Sulaiman A, Inambao F, Bright G. Solar-hydrogen energy: an effective combination of two alternative energy sources that can meet the energy requirements of mobile robots, (2015). Cham: Springer; 2015: 819-832.
- 7 H-vision in Rotterdam targets “blue” hydrogen from natural gas, Fuel Cells Bulletin, 2019 (2019), 3, 9–10.
- 8Balcombe P, Speirs J, Johnson E, Martin J, Brandon N, Hawkes A. The carbon credentials of hydrogen gas networks and supply chains. Renew Sustain Energy Rev. 2018; 91: 1077-1088.
- 9Glenk G, Reichelstein S. Economics of converting renewable power to hydrogen. Nat Energy. 2019; 4(3): 216-222.
- 10Poompavai T, Kowsalya M. Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: a review. Renew Sustain Energy Rev. 2019; 107: 108-122.
- 11Ni M, Leung MKH, Leung DYC, Sumathy K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev. 2007; 11(3): 401-425.
- 12Milbrandt A and Mann M, Potential for hydrogen production from key renewable resources in the United States, Technical Report NREL/TP-640-41134, (2007), February
- 13Dunn S. Hydrogen futures: toward a sustainable energy system. Int J Hydrogen Energy. 2002; 27(3): 235-264.
- 14Dhere NG. Toward GW/year of CIGS production within the next decade. Sol Energ Mater Sol Cell. 2007; 91: 15-16. 1376–1382
- 15Solanki SC, Dubey S, Tiwari A. Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors. Appl Energy. 2009; 86(11): 2421-2428.
- 16Thirugnanasambandam M, Iniyan S, Goic R. A review of solar thermal technologies. Renew Sustain Energy Rev. 2010; 14(1): 312-322.
- 17Gupta RB. Hydrogen Fuel: Production, Transport, and Storage, (2009). Taylor & Francis Group United States of America: CRC Press; 2009.
- 18Romm JJ. The Hype About Hydrogen: Fact and Fiction in the Race to Save the Climate, (2004). Island Press; 2004.
- 19Apostoleris H, Sgouridis S, Stefancich M, Chiesa M. Evaluating the factors that led to low-priced solar electricity projects in the Middle East. Nat Energy. 2018; 3(12): 1109-1114.
- 20Pagliaro M, Konstandopoulos AG, Ciriminna R, Palmisano G. Solar hydrogen: fuel of the near future. Energ Environ Sci. 2010; 3(3): 279-287.
- 21Tao P, Ni G, Song C, et al. Solar-driven interfacial evaporation. Nat Energy. 2018; 3(12): 1031-1041.
- 22Markandya A, Wilkinson P. Electricity generation and health. The Lancet. 2007; 370(9591): 979-990.
- 23Lee JT, Callaway DS. The cost of reliability in decentralized solar power systems in sub-Saharan Africa. Nat Energy. 2018; 3(11): 960-968.
- 24Leijtens T, Bush KA, Prasanna R, McGehee MD. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy. 2018; 3(10): 828-838.
- 25Hosseini SE. Development of solar energy towards solar city Utopia. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2019; 1-14.
- 26Tebibel H, Khellaf A, Menia S, Nouicer I. Design, modelling and optimal power and hydrogen management strategy of an off grid PV system for hydrogen production using methanol electrolysis. Int J Hydrogen Energy. 2017; 42(22): 14950-14967.
- 27Agbossou K, Kolhe M, Hamelin J, Bose TK. Performance of a stand-alone renewable energy system based on energy storage as hydrogen. IEEE Trans Energ Convers. 2004; 19(3): 633-640.
- 28Bernal-Agustín JL, Dufo-López R. Simulation and optimization of stand-alone hybrid renewable energy systems. Renew Sustain Energy Rev. 2009; 13(8): 2111-2118.
- 29Götz M, Lefebvre J, Mörs F, et al. Renewable power-to-gas: a technological and economic review. Renew Energy. 2016; 85: 1371-1390.
- 30Véjar S, Campos J, Sebastian PJ. Characterization of the electrical energy consumption of a building for the dimensioning of a solar-hydrogen energy system. Int J Energ Res. 2010; 34(11): 962-969.
- 31Manoharan Y, Hosseini SE, Butler B, et al. Hydrogen fuel cell vehicles; current status and future prospect. Appl Sci. 2019; 9(11): 2296 1-17.
- 32Jia J, Seitz LC, Benck JD, et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat Commun. 2016; 7(1): 13237. https://doi.org/10.1038/ncomms13237
- 33Fujii K, Nakamura S, Sugiyama M, Watanabe K, Bagheri B, Nakano Y. Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell. Int J Hydrogen Energy. 2013; 38(34): 14424-14432.
- 34Burhan M, Oh SJ, Chua KJE, Ng KC. Solar to hydrogen: compact and cost effective CPV field for rooftop operation and hydrogen production. Appl Energy. 2017; 194: 255-266.
- 35Khaselev O, Bansal A, Turner JA. High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int J Hydrogen Energy. 2001; 26(2): 127-132.
- 36Islam S, Dincer I, Yilbas BS. System development for solar energy-based hydrogen production and on-site combustion in HCCI engine for power generation. Solar Energy. 2016; 136: 65-77.
- 37Steinfeld A. Solar thermochemical production of hydrogen––a review. Solar Energy. 2005; 78(5): 603-615.
- 38Yang Y, Zhang C, Huang D, et al. Boron nitride quantum dots decorated ultrathin porous g-C3N4: intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Appl Catal Environ. 2019; 245: 87-99.
- 39Yi H, Huang D, Qin L, et al. Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production. Appl Catal Environ. 2018; 239: 408-424.
- 40Yi H, Qin L, Huang D, et al. Nano-structured bismuth tungstate with controlled morphology: fabrication, modification, environmental application and mechanism insight. Chem Eng J. 2019; 358: 480-496.
- 41Zamfirescu C, Naterer GF, Dincer I. Water splitting with a dual photo-electrochemical cell and hybrid catalysis for enhanced solar energy utilization. Int J Energ Res. 2013; 37(10): 1175-1186.
- 42Hosseini SE, Abdul Wahid M, Jamil MM, Azli AAM, Mohamad FM. A review on biomass-based hydrogen production for renewable energy supply. Int J Energ Res. 2015; 39(12): 1597-1615.
- 43Joshi AS, Reddy BV. Solar hydrogen production: a comparative performance assessment. Int J Hydrogen Energy. 2011; 36(17): 11246-11257.
- 44El-Emam RS, Özcan H. Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production. J Clean Prod. 2019; 220: 593-609.
- 45Pregger T, Graf D, Krewitt W, Sattler C, Roeb M, Möller S. Prospects of solar thermal hydrogen production processes. Int J Hydrogen Energy. 2009; 34(10): 4256-4267.
- 46Villafán-Vidales HI, Arancibia-Bulnes CA, Riveros-Rosas D, Romero-Paredes H, Estrada CA. An overview of the solar thermochemical processes for hydrogen and syngas production: reactors, and facilities. Renew Sustain Energy Rev. 2017; 75: 894-908.
- 47Çelik D, Yıldız M. Investigation of hydrogen production methods in accordance with green chemistry principles. Int J Hydrogen Energy. 2017; 42(36): 23395-23401.
- 48Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes. Renew Sustain Energy Rev. 2017; 67: 597-611.
- 49Kogan A. Direct solar thermal splitting of water and on-site separation of the products—II. Experimental feasibility study. Int J Hydrogen Energy. 1998; 23(2): 89-98.
- 50Bilgen E, Ducarroir M, Foex M, Sibieude F, Trombe F. Use of solar energy for direct and two-step water decomposition cycles. Int J Hydrogen Energy. 1977; 2(3): 251-257.
- 51Baykara SZ. Experimental solar water thermolysis. Int J Hydrogen Energy. 2004; 29(14): 1459-1469.
- 52Kaneko H, Gokon N, Hasegawa N, Tamaura Y. Solar thermochemical process for hydrogen production using ferrites. Energy. 2005; 30: 11-12. 2171–2178
- 53Fuqiang W, Lanxin M, Ziming C, Jianyu T, Xing H, Linhua L. Radiative heat transfer in solar thermochemical particle reactor: a comprehensive review. Renew Sustain Energy Rev. 2017; 73: 935-949.
- 54Roeb M, Neises M, Säck J-P, et al. Operational strategy of a two-step thermochemical process for solar hydrogen production. Int J Hydrogen Energy. 2009; 34(10): 4537-4545.
- 55Diver RB, Miller JE, Allendorf MD, Siegel NP, Hogan RE. Solar thermochemical water-splitting ferrite-cycle heat engines. J Sol Energ Eng. 2008; 130(4):041001. https://doi.org/10.1115/1.2969781
- 56Agrafiotis C, Roeb M, Sattler C. A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew Sustain Energy Rev. 2015; 42: 254-285.
- 57Chambon M, Abanades S, Flamant G. Thermal dissociation of compressed ZnO and SnO2 powders in a moving-front solar thermochemical reactor. AIChE J. 2011; 57(8): 2264-2273.
- 58Balta MT, Dincer I, Hepbasli A. Energy and exergy analyses of magnesium-chlorine (Mg-Cl) thermochemical cycle. Int J Hydrogen Energy. 2012; 37(6): 4855-4862.
- 59Ghandehariun S, Naterer GF, Dincer I, Rosen MA. Solar thermochemical plant analysis for hydrogen production with the copper–chlorine cycle. Int J Hydrogen Energy. 2010; 35(16): 8511-8520.
- 60Perkins C, Weimer AW. Solar-thermal production of renewable hydrogen. AIChE J. 2009; 55(2): 286-293.
- 61Ozcan H, Dincer I. Performance investigation of magnesium–chloride hybrid thermochemical cycle for hydrogen production. Int J Hydrogen Energy. 2014; 39(1): 76-85.
- 62Ozcan H, Dincer I. Comparative performance assessment of three configurations of magnesium–chlorine cycle. Int J Hydrogen Energy. 2016; 41(2): 845-856.
- 63Ozcan H. Modeling of a new four-step magnesium–chlorine cycle with dry HCl capture for more efficient hydrogen production. Int J Hydrogen Energy. 2016; 41(19): 7792-7801.
- 64Zamfirescu C, Naterer GF, Dincer I. Vapor compression CuCl heat pump integrated with a thermochemical water splitting cycle. Thermochimica Acta. 2011; 512: 1-2. 40–48
- 65Naterer GF, Suppiah S, Rosen MA, et al. Advances in unit operations and materials for the CuCl cycle of hydrogen production. Int J Hydrogen Energy. 2017; 42(24): 15708-15723.
- 66Gorensek MB. Hybrid sulfur cycle flowsheets for hydrogen production using high-temperature gas-cooled reactors. Int J Hydrogen Energy. 2011; 36(20): 12725-12741.
- 67Yadav D, Banerjee R. A review of solar thermochemical processes. Renew Sustain Energy Rev. 2016; 54: 497-532.
- 68Koumi Ngoh S, Njomo D. An overview of hydrogen gas production from solar energy. Renew Sustain Energy Rev. 2012; 16(9): 6782-6792.
- 69Rodat S, Abanades S, Flamant G. Co-production of hydrogen and carbon black from solar thermal methane splitting in a tubular reactor prototype. Solar Energy. 2011; 85(4): 645-652.
- 70Abanades S, Kimura H, Otsuka H. A drop-tube particle-entrained flow solar reactor applied to thermal methane splitting for hydrogen production. Fuel. 2015; 153: 56-66.
- 71Abanades S, Kimura H, Otsuka H. Hydrogen production from thermo-catalytic decomposition of methane using carbon black catalysts in an indirectly-irradiated tubular packed-bed solar reactor. Int J Hydrogen Energy. 2014; 39(33): 18770-18783.
- 72Abanades S, Flamant G. Production of hydrogen by thermal methane splitting in a nozzle-type laboratory-scale solar reactor. Int J Hydrogen Energy. 2005; 30(8): 843-853.
- 73Kodama T. High-temperature solar chemistry for converting solar heat to chemical fuels. Progr Energ Combust Sci. 2003; 29(6): 567-597.
- 74Puig-Arnavat M, Tora EA, Bruno JC, Coronas A. State of the art on reactor designs for solar gasification of carbonaceous feedstock. Solar Energy. 2013; 97: 67-84.
- 75Rubin R, Karni J. Carbon dioxide reforming of methane in directly irradiated solar reactor with porcupine absorber. J Sol Energ Eng. 2011; 133(2):021008. https://doi.org/10.1115/1.4003678
- 76Jiang D, Yang W, Tang A. A refractory selective solar absorber for high performance thermochemical steam reforming. Appl Energy. 2016; 170: 286-292.
- 77Joshi AS, Reddy BV. Effects of various parameters on energy and exergy efficiencies of a solar thermal hydrogen production system. Int J Hydrogen Energy. 2016; 41(19): 7997-8007.
- 78Siddiqui O, Dincer I. Examination of a new solar-based integrated system for desalination, electricity generation and hydrogen production. Solar Energy. 2018; 163: 224-234.
- 79Bilgen E. Solar hydrogen from photovoltaic-electrolyzer systems. Energ Conver Manage. 2001; 42(9): 1047-1057.
- 80Lodhi MAK. A hybrid system of solar photovoltaic, thermal and hydrogen: a future trend. Int J Hydrogen Energy. 1995; 20(6): 471-484.
- 81Rzayeva MP, Salamov OM, Kerimov MK. Modeling to get hydrogen and oxygen by solar water electrolysis. Int J Hydrogen Energy. 2001; 26(3): 195-201.
- 82Yilanci A, Dincer I, Ozturk HK. A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Progr Energ Combust Sci. 2009; 35(3): 231-244.
- 83Joshi AS, Reddy BV. Exergetic assessment of solar hydrogen production methods. Int J Hydrogen Energy. 2010; 35(10): 4901-4908.
- 84Joshi AS, Dincer I, Reddy BV. Performance analysis of photovoltaic systems: a review. Renew Sustain Energy Rev. 2009; 13(8): 1884-1897.
- 85Tributsch H. Photovoltaic hydrogen generation. Int J Hydrogen Energy. 2008; 33(21): 5911-5930.
- 86Kelly NA, Gibson TL, Cai M, Spearot JA, Ouwerkerk DB. Development of a renewable hydrogen economy: optimization of existing technologies. Int J Hydrogen Energy. 2010; 35(3): 892-899.
- 87Kothari R, Buddhi D, Sawhney RL. Comparison of environmental and economic aspects of various hydrogen production methods. Renew Sustain Energy Rev. 2008; 12(2): 553-563.
- 88Ulleberg Ø, Mørner SO. TRNSYS simulation models for solar-hydrogen systems. Solar Energy. 1997; 59: 4-6. 271–279
- 89Lewis NS. Toward cost-effective solar energy use. Science (New York, NY). 2007; 315(5813): 798-801.
- 90Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (Version 45). Prog Photovoltaics: Res Appl. 2015; 23(1): 1-9.
- 91Razykov TM, Ferekides CS, Morel D, Stefanakos E, Ullal HS, Upadhyaya HM. Solar photovoltaic electricity: current status and future prospects. Solar Energy. 2011; 85(8): 1580-1608.
- 92Price JS, Grede AJ, Wang B, et al. High-concentration planar microtracking photovoltaic system exceeding 30% efficiency. Nat Energy. 2017; 2(8):17113. https://doi.org/10.1038/nenergy.2017.113
- 93Apostoleris H, Stefancich M, Chiesa M. Tracking-integrated systems for concentrating photovoltaics. Nat Energy. 2016; 1(4):16018. https://doi.org/10.1038/nenergy.2016.18
- 94Chong KK, Siaw FL, Wong CW, Wong GS. Design and construction of non-imaging planar concentrator for concentrator photovoltaic system. Renew Energy. 2009; 34(5): 1364-1370.
- 95Chong K-K, Lau S-L, Yew T-K, Tan PC-L. Design and development in optics of concentrator photovoltaic system. Renew Sustain Energy Rev. 2013; 19: 598-612.
- 96Burhan M, Shahzad MW, Ng KC. Concentrated photovoltaic (CPV): Hydrogen design methodology and optimization. In: Advances In Hydrogen Generation Technologies. InTech; 2018 2018.
10.5772/intechopen.78055 Google Scholar
- 97McConnell R. A solar concentrator pathway to low-cost electrolytic hydrogen. In: Solar Hydrogen Generation, (2008). New York, NY: Springer New York; 2008: 65-86.
10.1007/978-0-387-72810-0_4 Google Scholar
- 98Chemisana D. Building integrated concentrating photovoltaics: a review. Renew Sustain Energy Rev. 2011; 15(1): 603-611.
- 99Ghodbane M, Boumeddane B, Said Z, Bellos E. A numerical simulation of a linear Fresnel solar reflector directed to produce steam for the power plant. J Clean Prod. 2019; 231: 494-508.
- 100Andreev VM, Grilikhes VA, Khvostikov VP, et al. Concentrator PV modules and solar cells for TPV systems. Sol Energ Mater Sol Cell. 2004; 84: 1-4. 3–17
- 101Xu Q, Ji Y, Riggs B, et al. A transmissive, spectrum-splitting concentrating photovoltaic module for hybrid photovoltaic-solar thermal energy conversion. Solar Energy. 2016; 137: 585-593.
- 102Widyolar B, Jiang L, Winston R. Spectral beam splitting in hybrid PV/T parabolic trough systems for power generation. Appl Energy. 2018; 209: 236-250.
- 103Palavras I, Bakos GC. Development of a low-cost dish solar concentrator and its application in zeolite desorption. Renew Energy. 2006; 31(15): 2422-2431.
- 104Burhan M. Theoritical and Experimental Study of Concentrated Photovoltaic (CPV) System with Hydrogen Production as Energy Storage, (Doctoral dissertation). National University of Singapore; 2015.
- 105Garboushian V., Stone K., A. S.-C. Photovoltaics, and undefined 2007, 12 The Amonix High-Concentration Photovoltaic System, Springer, 130 (2007), 253.
- 106Xu G, Zhong Z, Wang B, Guo R, and Tian Y, Design of PSD based solar direction sensor, 2013, 8916 (2013), 89162K.
- 107Miller DC, Kurtz SR. Durability of Fresnel lenses: a review specific to the concentrating photovoltaic application. Sol Energ Mater Sol Cell. 2011; 95(8): 2037-2068.
- 108Vivar M, Herrero R, Antón I, et al. Effect of soiling in CPV systems. Solar Energy. 2010; 84(7): 1327-1335.
- 109Burhan M, Shahzad MW, Ng KC. Hydrogen at the rooftop: compact CPV-hydrogen system to convert sunlight to hydrogen. Appl Therm Eng. 2018; 132: 154-164.
- 110Burhan M, Chua KJE, Ng KC. Sunlight to hydrogen conversion: design optimization and energy management of concentrated photovoltaic (CPV-Hydrogen) system using micro genetic algorithm. Energy. 2016; 99: 115-128.
- 111Nishioka K, Takamoto T, Agui T, Kaneiwa M, Uraoka Y, Fuyuki T. Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell's characteristics and field-test meteorological data. Sol Energ Mater Sol Cell. 2006; 90(1): 57-67.
- 112Cotal H and Sherif R, Temperature dependence of the IV parameters from triple junction GaInP/InGaAs/Ge concentrator solar cells, in 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, 2006, (2006), 845–848.
- 113Burhan M, Shahzad MW, Ng KC. Development of performance model and optimization strategy for standalone operation of CPV-hydrogen system utilizing multi-junction solar cell. Int J Hydrogen Energy. 2017; 42(43): 26789-26803.
- 114Onda K, Kyakuno T, Hattori K, Ito K. Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis. J Power Sources. 2004; 132: 1-2. 64–70
- 115Roy A, Watson S, Infield D. Comparison of electrical energy efficiency of atmospheric and high-pressure electrolysers. Int J Hydrogen Energy. 2006; 31(14): 1964-1979.
- 116Luo Q, Hu J-B, Sun B, et al. Experimental investigation of combustion characteristics and NOx emission of a turbocharged hydrogen internal combustion engine. Int J Hydrogen Energy. 2018: 5537-5584.
- 117Barbaro P, Bianchini C. Catalysis for Sustainable Energy Production, (2009). Wiley-VCH; 2009.
10.1002/9783527625413 Google Scholar
- 118Sapountzi FM, Gracia JM, Weststrate C.J. (Kees-Jan), Fredriksson Hans O.A., Niemantsverdriet J.W. (Hans). Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Progr Energ Combust Sci. 2017; 58: 1-35.
- 119Zeng K, Zhang D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Progr Energ Combust Sci. 2010; 36(3): 307-326.
- 120Laguna-Bercero MA. Recent advances in high temperature electrolysis using solid oxide fuel cells: A review. J Power Sources. 2012; 203: 4-16.
- 121Varcoe JR, Atanassov P, Dekel DR, et al. Anion-exchange membranes in electrochemical energy systems. Energ Environ Sci. 2014; 7(10): 3135-3191.
- 122Bhattacharyya R, Misra A, Sandeep KC. Photovoltaic solar energy conversion for hydrogen production by alkaline water electrolysis: conceptual design and analysis. Energ Conver Manage. 2017; 133: 1-13.
- 123Sellami MH, Loudiyi K. Electrolytes behavior during hydrogen production by solar energy. Renew Sustain Energy Rev. 2017; 70: 1331-1335.
- 124Carmo M, Fritz DL, Mergel J, Stolten D. A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy. 2013; 38(12): 4901-4934.
- 125Bhandari R, Trudewind CA, Zapp P. Life cycle assessment of hydrogen production via electrolysis—a review. J Clean Prod. 2014; 85: 151-163.
- 126Miller HA, Vizza F, Marelli M, et al. Highly active nanostructured palladium-ceria electrocatalysts for the hydrogen oxidation reaction in alkaline medium. Nano Energy. 2017; 33: 293-305.
- 127Ulleberg O. Stand-alone power systems for the future: optimal design, operation and control of solar-hydrogen energy systems. Trondheim, Norvège: National Technical Reports Library - NTIS, NTNU; 1988.
- 128Li C-H, Zhu X-J, Cao G-Y, Sui S, Hu M-R. Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology. Renew Energy. 2009; 34(3): 815-826.
- 129Holladay JD, Hu J, King DL, Wang Y. An overview of hydrogen production technologies. Catal Today. 2009; 139(4): 244-260.
- 130Chen L, Dong X, Wang Y, Xia Y. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat Commun. 2016; 7(1):11741. https://doi.org/10.1038/ncomms11741
- 131Ulleberg Ø, Nakken T, Eté A. The wind/hydrogen demonstration system at Utsira in Norway: evaluation of system performance using operational data and updated hydrogen energy system modeling tools. Int J Hydrogen Energy. 2010; 35(5): 1841-1852.
- 132Ferrari ML, Rivarolo M, Massardo AF. Hydrogen production system from photovoltaic panels: experimental characterization and size optimization. Energ Conver Manage. 2016; 116: 194-202.
- 133Parra D, Valverde L, Pino FJ, Patel MK. A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. Renew Sustain Energy Rev. 2019; 101: 279-294.
- 134Gazey R, Salman SK, Aklil-D'Halluin DD. A field application experience of integrating hydrogen technology with wind power in a remote island location. J Power Sources. 2006; 157(2): 841-847.
- 135Ursua A, Gandia LM, Sanchis P. Hydrogen production from water electrolysis: current status and future trends. Proc IEEE. 2012; 100(2): 410-426.
- 136Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev. 2015; 44(8): 2060-2086.
- 137Babar PT, Pawar BS, Lokhande AC, et al. Annealing temperature dependent catalytic water oxidation activity of iron oxyhydroxide thin films. J Energy Chem. 2017; 26(4): 757-761.
- 138Wang J, Cui W, Liu Q, Xing Z, Asiri AM, Sun X. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater. 2016; 28(2): 215-230.
- 139Bi L, Boulfrad S, Traversa E. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chem Soc Rev. 2014; 43(24): 8255-8270.
- 140Houaijia A, Roeb M, Monnerie N, Sattler C. Solar power tower as heat and electricity source for a solid oxide electrolyzer: a case study. Int J Energ Res. 2015; 39(8): 1120-1130.
- 141El-Emam RS, Dincer I. Nuclear-assisted hydrogen production. In: Fuel Cells and Hydrogen Production, (2019). New York, NY: Springer New York; 2019: 1151-1161.
10.1007/978-1-4939-7789-5_961 Google Scholar
- 142Paul B, Andrews J. Optimal coupling of PV arrays to PEM electrolysers in solar–hydrogen systems for remote area power supply. Int J Hydrogen Energy. 2008; 33(2): 490-498.
- 143Clarke RE, Giddey S, Ciacchi FT, Badwal SPS, Paul B, Andrews J. Direct coupling of an electrolyser to a solar PV system for generating hydrogen. Int J Hydrogen Energy. 2009; 34(6): 2531-2542.
- 144Steward D, Ramsden T, and Zuboy J, H2A Production Model, Version 2 User Guide, No. NREL/TP-560-43983. National Renewable Energy Lab.(NREL), Golden, CO (United States), (2008).
- 145Hinkley JT, O'Brien JA, Fell CJ, Lindquist S-E. Prospects for solar only operation of the hybrid sulphur cycle for hydrogen production. Int J Hydrogen Energy. 2011; 36(18): 11596-11603.
- 146Rodriguez C, Modestino MA, Moser C, Psaltis D. Design and cost considerations for practical solar-hydrogen generators. Energ Environ Sci. 2014; 7(12): 3828-3835.
- 147Graf D, Monnerie N, Roeb M, Schmitz M, Sattler C. Economic comparison of solar hydrogen generation by means of thermochemical cycles and electrolysis. Int J Hydrogen Energy. 2008; 33(17): 4511-4519.
- 148Corgnale C, Summers WA. Solar hydrogen production by the hybrid sulfur process. Int J Hydrogen Energy. 2011; 36(18): 11604-11619.
- 149Kolb GJ, Diver RB, Siegel N. Central-station solar hydrogen power plant. J Sol Energ Eng. 2007; 129(2): 179-183.
- 150Glatzmaier G, Blake D, and Showalter S, Assessment of methods for hydrogen production using concentrated solar energy, National Renewable Energy Lab, Report number: NREL/TP-570-23629 ON: DE98001924; TRN: AHC29804%%31, (1998).
- 151Amos WA, Updated Cost Analysis of photobiological hydrogen production from chlamydomonas reinhardtii green algae: milestone completion report, No. NREL/MP-560-35593. National Renewable Energy Lab., Golden, CO.(US), (2004).
- 152Choi JH, Il Tak N, Kim YH, and Park WS, Hydrogen production costs of various primary energy sources, Korea Atomic Energy Research Institute. No. KAERI/TR--3067/2005, (2005).
- 153Giaconia A, Grena R, Lanchi M, Liberatore R, Tarquini P. Hydrogen/methanol production by sulfur–iodine thermochemical cycle powered by combined solar/fossil energy. Int J Hydrogen Energy. 2007; 32(4): 469-481.
- 154Charvin P, Stéphane A, Florent L, Gilles F. Analysis of solar chemical processes for hydrogen production from water splitting thermochemical cycles. Energ Conver Manage. 2008; 49(6): 1547-1556.
- 155Shaner MR, Atwater HA, Lewis NS, McFarland EW. A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energ Environ Sci. 2016; 9(7): 2354-2371.
- 156Boudries R. Techno-economic study of hydrogen production using CSP technology. Int J Hydrogen Energy. 2018; 43(6): 3406-3417.