Ion Migration-Induced Capacity Evolution in Iron–Chromium Redox Flow Batteries during Cycling
Corresponding Author
Ying Liu
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorJinxiu Cao
State Power Investment Corporation Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorLilong Zhang
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorRong Zhang
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorJinghao Li
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorJing Li
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorXiaomeng Li
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorJinyi Zhang
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorLin Yang
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorWei Yu
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorFeng Shen
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
State Power Investment Corporation Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorCorresponding Author
Ying Liu
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorJinxiu Cao
State Power Investment Corporation Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorLilong Zhang
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorRong Zhang
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorJinghao Li
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorJing Li
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorXiaomeng Li
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorJinyi Zhang
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorLin Yang
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorWei Yu
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorFeng Shen
State Power Investment Corporation Beijing HE Energy Storage Technology Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
State Power Investment Corporation Co., Ltd., Beijing Future Science Park, Beijing, 102209 China
Search for more papers by this authorAbstract
This article focuses on the iron–chromium redox flow batteries (ICRFBs), systematically investigating the effects of different states of charge (SOCs) on electrolytes, the correlation between detection conditions and capacity, ion migration mechanisms, joint estimation of component migration and capacity loss, as well as the significance of ion migration for system operation. The results reveal that during charging, the volume and ion concentration of positive/negative electrolytes exhibit regular changes, with chromium ion and hydrated hydrogen ion migration being the key factors affecting the charging process. Under detection conditions, SOCs calculated by concentration and voltage show deviations from theoretical values, highlighting the need for precise control of electrolyte charging depth in practical applications. Ion migration is driven by combined effects of potential difference, concentration gradient, and osmotic pressure. In the initial stage, ion diffusion delays capacity decay, while water molecule migration leads to normal capacity decline in the later stage. Utilizing a capacity recovery system combined with ion enrichment can enhance battery capacity beyond the design value. These findings provide critical theoretical support for the practical application and optimized design of ICRFBs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1C. A. Hill, M. C. Such, D. Chen, J. Gonzalez, W. M. Grady, IEEE Trans. Smart Grid 2012, 3, 850.
- 2T. Zhang, Q. Chen, X. Li, J. Liu, W. Zhou, B. Wang, Z. Zhao, W. Li, D. Chao, D. Zhao, CCS Chem. 2022, 4, 2874.
- 3W. Wang, Q. Luo, B. Li, X. Wei, L. Li, Z. Yang, Adv. Funct. Mater. 2013, 23, 970.
- 4R. Ye, D. Henkensmeier, S. J. Yoon, Z. Huang, D. K. Kim, Z. Chang, S. Kim, R. Chen, J. Electrochem. Energy Convers. Storage 2018, 15, 010801.
- 5S. K. Murthy, A. K. Sharma, C. Choo, E. Birgersson, J. Electrochem. Soc. 2018, 165, A1746.
- 6K. Hawthorne, J. S. Wainright, R. F. Savinell, J. Electrochem. Soc. 2014, 161, A1662.
- 7S. Wang, Z. Xu, X. Wu, H. Zhao, J. Zhao, J. Liu, C. Yan, X. Fan, Appl. Energy 2020, 271, 115252.
- 8D. Stephenson, S. Kim, F. Chen, E. Thomsen, V. Viswanathan, W. Wang, V. Sprenkle, J. Electrochem. Soc. 2012, 159, A1993.
- 9G. P. Rajarathnam, T. K. Ellis, A. P. Adams, B. Soltani, R. Zhou, P. J. Cullen, A. M. Vassallo, J. Electrochem. Soc. 2021, 168, 070522.
- 10Y. K. Zeng, T. S. Zhao, L. An, X. L. Zhou, L. Wei, J. Power Sources 2015, 300, 438.
- 11L. Qiao, S. Liu, M. Fang, M. Yang, X. Ma, Polymers 2022, 14, 2245.
- 12Y. Niu, S. Zeng, G. Wu, Q. Gao, R. Zhou, C. Li, Y. Zhou, Q. Xu, Green Energy Intell. Transp. 2024, 3, 100158.
- 13J. E. Jang, R. A. Kim, S. Jayasubramaniyan, C. Lee, J. Choi, Y. Lee, S. Kang, J. Ryu, S. W. Lee, J. Cho, D. W. Lee, H. K. Song, W. Choe, D. H. Seo, H. W. Lee, Adv. Energy Mater. 2023, 13, 2300707.
- 14R. K. Nagarale, G. S. Gohil, V. K. Shahi, R. Rangarajan, Colloids Surf., A 2004, 251, 133.
- 15J. Vrána, J. Charvát, P. Mazúr, P. Bělský, J. Dundálek, J. Pocedič, J. Kosek, J. Membr. Sci. 2018, 552, 202.
- 16X. L. Zhou, T. S. Zhao, L. An, L. Wei, C. Zhang, Electrochim. Acta 2015, 153, 492.
- 17W. Y. Hsu, T. D. Gierke, J. Membr. Sci. 1983, 13, 307.
- 18T. T. Bui, S. Park, M. Shin, M. M. Ikhsan, Y. Kwon, D. Henkensmeier, Adv. Energy Mater. 2025, 15, 2500440.
- 19S. S. Peng, X. M. Yan, D. S. Zhang, X. Wu, Y. Luo, G. He, RSC Adv. 2016, 6, 23479.
- 20J. Kim, J. Han, H. Kim, K. Kim, H. Lee, E. Kim, W. Chio, J. C. Lee, J. Energy Storage 2022, 45, 103784.
- 21Zhao, J. Xi, X. Teng, Z. Wu, X. Qiu, ACTA Chmica Sinice 2011, 69, 132.
- 22Song, X. Chen, W. Guo, Y. Fan, B. Wang, Membr. Sci. Technol. 2014, 34, 9.
- 23T. Mohammadi, S. C. Chieng, M. Skyllas Kazacos, J. Membr. Sci. 1997, 133, 151.
- 24T. Sukkar, M. Skyllas-Kazacos, J. Membr. Sci. 2003, 222, 235.
- 25C. Sun, J. Chen, H. Zhang, X. Han, Q. Luo, J. Power Sources 2010, 195, 890.
- 26S. Wang, Z. Xu, X. Wu, H. Zhao, J. Zhao, J. Liu, C. Yan, X. Fan, Electrochim. Acta 2021, 368, 137524.
- 27K. Oh, S. Won, H. Ju, Electrochim. Acta 2015, 181, 238.
- 28X.-G. Yang, Q. Ye, P. Cheng, T. S. Zhao, Appl. Energy 2015, 145, 306.
- 29Q. Luo, L. Li, Z. Nie, W. Wang, X. Wei, B. Li, B. Chen, Z. Yang, J. Power Sources 2012, 218, 15.
- 30M. Coleman, C. K. Lee, C. Zhu, W. G. Hurley, IEEE Trans. Ind. Electron. 2007, 54, 2550.
- 31C. Blanc, A. Rufer, in 2008 IEEE Inter. Conf. on Sustainable Energy Technologies, Singapore 2008, pp. 696–701.
- 32B. Xiong, J. Zhao, J. Li, in 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada 2013, pp. 1–5.
- 33S. Srinivasan, J. Newman, J. Electrochem. Soc. 1992, 139, 385.
- 34F. D. Coms, A. B. LaLonde, J. Power Sources 2023, 580, 233359.
- 35L. Yan, D. Li, S. Li, Z. Xu, J. Dong, W. Jing, W. Xing, ACS Appl. Mater. Interfaces 2016, 8, 35289.
- 36J. C. T. Eijkel, A. Van Den Berg, Chem. Soc. Rev. 2010, 39, 957.
- 37S. Song, Optimization and Design for Electrolyte of Low-Cost Metal-Based Flow Batteries, Doctoral Dissertation, University of Science and Technology of China, Hefei, Anhui Province, China 2022.
- 38L. A. Curtiss, J. W. Halley, J. Hautman, A. Rahman, J. Chem. Phys. 1987, 86, 2319.
- 39W. D. Bunch, Analysis of the Visible Spectra of Concentrated Chromic Chloride Solutions, National Aeronautics and Space Administration, Washington, D.C. 1983.
- 40E. Miliordos, S. S. Xantheas, J. Chem. Theory Comput. 2015, 11, 1549.
- 41D. A. Johnson, M. A. Reid, NASA Technical Memorandum, National Aeronautics and Space Administration, Washington, D.C. 1982.
- 42C. T. C. Wan, K. E. Rodby, M. L. Perry, Y. M. Chiang, F. R. Brushett, J. Power Sources 2023, 554, 232248.
- 43L. Li, Q. Luo, ECS Meeting Abstracts MA 2021, 2021, 2.