Oxygen-Enriched Porous Carbon Derived from Biomass Waste for Supercapacitors with High Electrochemical Performances
Corresponding Author
Yan Wu
School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, 245041 P. R. China
Search for more papers by this authorXiu-Yun Cui
School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, 245041 P. R. China
Search for more papers by this authorLe Pan
School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, 245041 P. R. China
Search for more papers by this authorRu Li
School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, 245041 P. R. China
Search for more papers by this authorYan-Xu Li
School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, 245041 P. R. China
Search for more papers by this authorHong-Xia Fang
School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, 245041 P. R. China
Search for more papers by this authorYan Wang
School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, 245041 P. R. China
Search for more papers by this authorMei-Hong Ge
School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, 245041 P. R. China
Search for more papers by this authorQi-Qi Zhuang
School of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, 257061 P. R. China
Search for more papers by this authorCorresponding Author
Yan Wu
School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, 245041 P. R. China
Search for more papers by this authorXiu-Yun Cui
School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, 245041 P. R. China
Search for more papers by this authorLe Pan
School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, 245041 P. R. China
Search for more papers by this authorRu Li
School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, 245041 P. R. China
Search for more papers by this authorYan-Xu Li
School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, 245041 P. R. China
Search for more papers by this authorHong-Xia Fang
School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, 245041 P. R. China
Search for more papers by this authorYan Wang
School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, 245041 P. R. China
Search for more papers by this authorMei-Hong Ge
School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, 245041 P. R. China
Search for more papers by this authorQi-Qi Zhuang
School of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, 257061 P. R. China
Search for more papers by this authorAbstract
The porous carbon-derived biomass is inexpensive and ecofriendly, making them the promising electrode materials for supercapacitors. In this work, oxygen-enriched porous carbon is derived from Platanus fibers via a carbonization and activation process using KMnO4 as the activator. KMnO4 plays the role of both activator and modifier. The obtained porous carbon possesses high oxygen content and shows tube-like hollow structures. The sample OPF-700-3 exhibits a high oxygen content (13.79%), total pore volume (0.64 cm3 g−1), and specific surface area (1406 m2 g−1). The prepared OPF-700-3 electrode material presents a high specific capacitance (318 F g−1 at 0.5 A g−1) and retains 181 F g−1 even at 50 A g−1 in a three-electrode system. The as-prepared symmetric supercapacitors have a high specific capacitance (252 F g−1) and an excellent cycle stability (96.5% specific capacitance retention after 20 000 cycles). Furthermore, it has a high energy of 7.04 Wh kg−1 at a power density of 22.66 W kg−1. This study provides a facile, inexpensive, and environmentally friendly method for biomass prepared from porous carbon, which are used as electrode materials present excellent electrochemical performances.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
ente70090-sup-0001-SuppData-S1.pdf1.1 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Liu, K. M. Dong, F. Q. Guo, J. J. Wang, B. Tang, L. W. Kong, N. J. Zhao, Y. T. Hou, J. F. Chang, H. Li, J. Anal. Appl. Pyrolysis. 2024, 177, 106278.
- 2Y. Wu, J. P. Cao, Z. H. Yang, Y. L. Wei, Q. Q. Zhuang, X. Y. Zhao, Z. Zhou, Y. Lu, H. C. Bai, Int. J. Hydrogen Energy 2021, 46, 32373.
- 3H. Liu, X. L. Huang, M. L. Zhou, J. P. Gu, M. D. Xu, L. Jiang, M. Q. Zheng, S. Li, Z. C. Miao, J. Anal. Appl. Pyrolysis 2023, 169, 105844.
- 4Z. H. Bi, Q. Q. Kong, Y. F. Cao, G. H. Sun, F. Y. Su, X. X. Wei, X. M. Li, A. Ahmad, L. J. Xie, C. M. Chen, J. Mater. Chem. A. 2019, 7, 16028.
- 5Z. Y. Pang, G. S. Li, X. L. Xiong, L. Ji, Q. Xu, X. L. Zou, X. G. Lu, J. Energy Chem. 2021, 61, 622.
- 6T. B. Nguyen, B. Yoon, T. D. Nguyen, E. Oh, Y. F. Ma, M. Wang, J. Suhr, Carbon 2023, 206, 383.
- 7P. Chen, Y. K. Tang, Y. Gao, Y. Zhang, L. Liu, J Power Sources. 2023, 580, 233334.
- 8G. S. Jiang, R. A. Senthil, Y. Z. Sun, T. R. Kumar, J. Q. Pan, J Power Sources. 2022, 520, 230886.
- 9Y. F. Xu, W. B. Lu, G. B. Xu, T. W. Chou, Composites Science and Technology 2021, 204, 108636.
- 10S. L. Huo, X. L. Zhang, B. L. Liang, Y. B. Zhao, K. X. Li, J Power Sources 2020, 450, 227612.
- 11L. P. Zheng, X. C. Dai, Y. H. Ouyang, Y. L. Chen, X. Y. Wang, J. Energy Storage. 2021, 33, 102152.
- 12N. N. Guo, M. Li, Y. Wang, X. K. Sun, F. Wang, R. Yang, ACS Appl. Mater. Interfaces 2016, 8, 33626.
- 13M. Y. Liu, J. Niu, Z. P. Zhang, M. L. Dou, F. Wang, Nano Energy 2018, 51, 366.
- 14J. Du, L. Liu, Z. P. Hu, Y. F. Yu, Y. Zhang, S. L. Hou, A. B. Chen, ACS Sustainable Chem. Eng. 2018, 6, 4008.
- 15C. C. Zhang, Y. Y. Wang, X. L. Wu, Diamond Relat. Mater. 2024, 144, 111011.
- 16H. Meskher, D. Ghernaout, A. K. Thakur, F. S. Jazi, Q. F. Alsalhy, S. S. Christopher, R. Sathyamurhty, R. Saidur, Mater. Today Commun. 2024, 38, 108517.
- 17Z. Sun, M. Zhang, H. Yin, Q. Hu, S. Krishnan, Z. H. Huang, H. J. Qi, X. L. Wang, Renewable Energy 2023, 219, 119375.
- 18K. Liang, Y. L. Chen, S. X. Wang, D. Wang, W. C. Wang, S. Y. Jia, N. Mitsuzakic, Z. D. Chen, J. Energy Storage. 2023, 70, 107947.
- 19F. Q. Guo, X. L. Li, Y. Liu, K. Y. Peng, C. L. Guo, Z. H. Rao, Energy Convers. Manage. 2018, 167, 81.
- 20Y. B. Li, D. Y. Zhang, Y. M. Zhang, J. J. He, Y. L. Wang, K. J. Wang, Y. T. Xu, H. X. Li, Y. Wang, J Power Sources 2020, 448, 227396.
- 21D. M. Kang, Q. L. Liu, J. J. Gu, Y. S. Su, W. Zhang, D. Zhang, ACS Nano 2015, 9, 11225.
- 22J. H. Hou, K. Jiang, M. Tahir, X. G. Wu, F. Idrees, M. Shen, C. B. Cao, J Power Sources 2017, 371, 148.
- 23N. N. Guo, M. Li, X. K. Sun, F. Wang, R. Yang, Green Chem. 2017, 19, 2595.
- 24Q. Xu, X. Y. Ni, S. X. Chen, J. H. Ye, J. Z. Yang, H. R. Wang, D. N. Li, H. R. Yuan, Int. J. Hydrogen Energy 2023, 48, 25635.
- 25A. B. Fuertes, M. Sevilla, ACS Appl. Mater. Interfaces. 2015, 7, 4344.
- 26D. Dong, Y. Xiao, J. Y. Xing, J. Cleaner Prod. 2023, 428, 139474.
- 27D. Dong, Y. S. Zhang, Y. Xiao, T. Wang, J. W. Wang, W. Gao, Fuel 2022, 309, 122168.
- 28Z. Yan, Z. W. Peng, J. M. Tour, Acc. Chem. Res. 2014, 47, 1327.
- 29D. P. Qiu, N. N. Guo, A. Gao, L. Zheng, W. J. Xu, M. Li, F. Wang, R. Yang, Electrochim. Acta 2019, 294, 398.
- 30N. Díez, G. A. Ferrero, A. B. Fuertes, M. Sevilla, Batteries Supercaps 2019, 2, 701.
- 31G. F. Li, Y. W. Li, X. F. Chen, X. Y. Hou, H. T. Lin, L. S. Jia, J. Colloid Interface Sci. 2022, 605, 71.
- 32S. H. Jiao, Y. T. Yao, J. L. Zhang, L. Q. Zhang, C. W. Li, H. X. Zhang, X. Zhao, H. L. Chen, J. C. Jiang, Appl. Surf. Sci. 2023, 615, 156365.
- 33S. Saini, P. Chand, A. Joshi, J. Energy Storage. 2021, 39, 102646.
- 34H. Tan, X. N. Wang, D. D. Jia, P. Hao, Y. H. Sang, H. Liu, J. Mater. Chem. A. 2017, 5, 2580.
- 35D. He, Z. H. Huang, M. X. Wang, J. Mater. Sci.: Mater. Electron. 2018, 30, 1468.
- 36L. J. Xie, G. H. Sun, F. Y. Su, X. Q. Guo, Q. Q. Kong, X. M. Li, L. Wan, W. Song, K. X. Li, C. X. Lv, C. M. Chen, J. Mater. Chem. A 2016, 4, 1637.
- 37L. Chen, Y. P. Liu, Y. Wang, A. Li, B. B. Zhou, C. X. Xu, Z. H. Hou, Int. J. Hydrogen Energy 2024, 53, 256.
- 38M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem. 2015, 87, 1051.
- 39P. X. Ren, D. L. Wu, T. Wang, P. Zeng, D.Z. Jia, Power Sources 2022, 532, 231072.
- 40H. Shao, Y. C. Wu, Z. F. Lin, P. L. Taberna, P. Simon, Chem. Soc. Rev. 2020, 49, 3005.
- 41F. Y. Han, H. Huang, Y. Wang, L. F. Liu, Cellulose 2021, 28, 10987.
- 42X. Yang, Y. H. Zheng, C. L. He, Y. J. Qiu, W. Y. Hou, B. L. Lu, Y. D. Chen, B. Huang, J. H. Lv, G. F. Lin, J. Anal. Appl. Pyrolysis 2023, 169, 105822.
- 43W. Liu, J. Mei, G. L. Liu, Q. Kou, T. F. Yi, S. J. Xiao, ACS Sustainable Chem. Eng. 2018, 6, 11595.
- 44X. Y. Guo, Y. Qiao, Z. L. Yi, C. M. Pedersen, Y. X. Wang, X. D. Tian, P. D. Han, Green Energy Environ. 2024, 9, 1427.
- 45C. Chen, M. K. Zhao, Y. Y. Cai, G. Z. Zhao, Y. Xie, L. Zhang, G. Zhu, L. K. Pan, Carbon 2021, 179, 458.
- 46D. Dong, Y. S. Zhang, Y. Xiao, T. Wang, J. W. Wang, W. P. Pan, Appl. Surface Sci. 2020, 529, 147074.
- 47K. Aruchamy, K. Dharmalingam, C. W. Lee, D. Mondal, N. Sanna Kotrappanavar, Chem. Eng. J. 2022, 427, 131477.
- 48E. Raymundo-Piñero, F. Leroux, F. Béguin, Adv. Mater. 2006, 18, 1877.
- 49D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, S. Shiraishi, H. Kurihara, A. Oya, Carbon 2003, 41, 1765.
- 50F. B. Fu, D. J. Yang, W. L. Zhang, H. Wang, X. Q. Qiu, Chem. Eng. J. 2020, 392, 123721.
- 51Y. G. Wang, Y. F. Song, Y. Y. Xia, Chem. Soc. Rev. 2016, 45, 5925.
- 52S. Yang, S. L. Wang, X. Liu, L. Li, Carbon 2019, 147, 540.
- 53J. H. Hou, C. B. Cao, F. Idrees, X. L. Ma, ACS Nano 2015, 9, 2556.
- 54Z. Y. Jin, A. H. Lu, Y. Y. Xu, J. T. Zhang, W. C. Li, Adv. Mater. 2014, 26, 3700.
- 55F. T. Ran, X. B. Yang, X. Q. Xu, S. W. Li, Y. Y. Liu, L. Shao, Chem. Eng. J. 2021, 412, 128673.
- 56J. Y. Liu, H. P. Li, H. S. Zhang, Q. Liu, R. M. Li, B. Li, J. Wang, J. Solid State Chem. 2018, 257, 64.
- 57G. Y. Xu, J. P. Han, B. Ding, P. Nie, J. Pan, H. Dou, H. S. Li, Green Chem. 2015, 17, 1668.
- 58X. Y. Zheng, W. Lv, Y. Tao, J. J. Shao, C. Zhang, D. H. Liu, J. Y. Luo, D. W. Wang, Q. H. Yang, Chem. Mater. 2014, 26, 6896.
- 59H. Chen, F. Yu, G. Wang, L. Chen, B. Dai, S. L. Peng, ACS Omega 2018, 3, 4724.
- 60G. F. Ma, Q. Yang, K. J. Sun, H. Peng, F. T. Ran, X. L. Zhao, Z. Q. Lei, Bioresour. Technol. 2015, 197, 137.
- 61S. S. Lu, W. S. Yang, M. Zhou, L. R. Qiu, B. F. Tao, Q. Zhao, X. H. Wang, L. Zhang, Q. Xie, Y. J. Ruan, J. Colloid Interface Sci. 2022, 610, 1088.
- 62Z. L. Liu, J. G. Hu, F. Shen, D. Tian, M. Huang, J. S. He, J. M. Zou, L. Zhao, Y. M. Zeng, J. Power Sources 2021, 497, 229880.
- 63Y. J. Li, G. L. Wang, T. Wei, Z. J. Fan, P. Yan, Nano Energy 2016, 19, 165.
- 64N. N. Guo, M. Li, X. K. Sun, F. Wang, R. Yang, Mater. Chem. Phys. 2017, 201, 399.
- 65Z. S. Li, B. L. Li, L. J. Du, W. L. Wang, X. C. Liao, H. Q. Yu, C. L. Yu, H. Q. Wang, Q. Y. Li, Chin. J. Chem. Eng. 2021, 40, 304.
Online Version of Record before inclusion in an issue
2500429