Exploring the Thermal Potential of Shape Stabilized Graphene Nano Platelets Enhanced Phase Change Material for Thermal Energy Storage
Corresponding Author
Anas Islam
Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, Selangor Darul Ehsan, 47500 Malaysia
Search for more papers by this authorCorresponding Author
Adarsh Kumar Pandey
Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, Selangor Darul Ehsan, 47500 Malaysia
CoE for Energy and Eco-Sustainability Research, Uttaranchal University, Dehradun, Uttarakhand, 248007 India
Search for more papers by this authorYasir Ali Bhutto
Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, Selangor Darul Ehsan, 47500 Malaysia
Search for more papers by this authorKalidasan Balasubramanian
Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, Selangor Darul Ehsan, 47500 Malaysia
Search for more papers by this authorSaidur Rahman
Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, Selangor Darul Ehsan, 47500 Malaysia
Lancaster University, Lancaster, LA1 4YW UK
Search for more papers by this authorMd. Abu Zaed
Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, Selangor Darul Ehsan, 47500 Malaysia
Search for more papers by this authorCorresponding Author
Anas Islam
Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, Selangor Darul Ehsan, 47500 Malaysia
Search for more papers by this authorCorresponding Author
Adarsh Kumar Pandey
Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, Selangor Darul Ehsan, 47500 Malaysia
CoE for Energy and Eco-Sustainability Research, Uttaranchal University, Dehradun, Uttarakhand, 248007 India
Search for more papers by this authorYasir Ali Bhutto
Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, Selangor Darul Ehsan, 47500 Malaysia
Search for more papers by this authorKalidasan Balasubramanian
Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, Selangor Darul Ehsan, 47500 Malaysia
Search for more papers by this authorSaidur Rahman
Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, Selangor Darul Ehsan, 47500 Malaysia
Lancaster University, Lancaster, LA1 4YW UK
Search for more papers by this authorMd. Abu Zaed
Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, Selangor Darul Ehsan, 47500 Malaysia
Search for more papers by this authorAbstract
Low thermal conductivity and liquid phase leakage impede the widespread adoption of phase change materials (PCMs). To enhance PCM performance and practical viability, addressing these limitations is crucial. Current study addresses low thermal conductivity and leakage issues. Enhanced thermal conductivity in PCMs is achieved by adding graphene nanoplatelets (GnPs), while expanded graphite (EG) acts as a leak-proof barrier. The composite PCM (ss-NePCM) composite is developed by ultra-sonication followed by vacuum impregnation process. The samples underwent comprehensive analysis: thermal conductivity (TEMPOs), chemical composition (FTIR), photo-transmittance (UV–Vis), and thermal stability (TGA). The results show that the composite with 0.6 wt% GnP (NePCM3) has the highest thermal conductivity enhancement of ≈112% while adding 15 wt% EG (ss-NePCM3) diminishes leakage problem. According to the optical performance assessment, the composite exhibits a notable increase in absorbance of 116% higher than that of the base PCM. However, due to the introduction of additives, the differential scanning calorimeter (DSC) detected a minor variation from 154 to 144.76 J g−1 in the latent heat. Furthermore, the composite demonstrates chemical stability and thermal reliability following 250 heating and cooling cycles. The ss-NePCM holds promise for thermal systems, where leakage could jeopardize system integrity.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
ente202400337-sup-0001-SuppData-S1.pdf358.3 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 J. Mitali, S. Dhinakaran, A. A. Mohamad, Energy Storage Sav. 2022, 1, 166.
- 2 J. Wang, W. Azam, Geosci. Front. 2024, 15, 101757.
- 3 K. Dong, Q. Jiang, Y. Liu, Z. Shen, M. Vardanyan, World Dev. 2024, 173, 106409.
- 4 H. Faraji, Ç. Yıldız, A. Arshad, M. Arıcı, K. Choukairy, M. El Alami, J. Energy Storage 2023, 70, 108087.
- 5
Y. A. Bhutto, A. K. Pandey, R. Saidur, K. Sharma, V. V. Tyagi, Mater. Today Sustainability 2023, 23, 100443.
10.1016/j.mtsust.2023.100443 Google Scholar
- 6 S. Daniarta, M. Nemś, P. Kolasiński, Energy 2023, 278, 127931.
- 7 B. Kalidasan, A. K. Pandey, R. Saidur, M. Samykano, V. V. Tyagi, Int. Mater. Rev. 2022, 68, 140.
- 8 B. M. Tripathi, S. K. Shukla, P. K. S. Rathore, J. Energy Storage 2023, 72, 108280.
- 9 M. A. Tony, S. A. Mansour, Int. J. Environ. Sci. Technol. 2020, 17, 709.
- 10 N. Şahan, H. Paksoy, Compos. B: Eng. 2017, 126, 88.
- 11 I. Daou, L. El-Kaddadi, O. Zegaoui, M. Asbik, N. Zari, J. Energy Storage 2018, 17, 84.
- 12 H. Santhanam, H. M. Ali, R. K. Sharma, Environ. Sci. Pollut. Res. 2024, 1, https://doi.org/10.1007/s11356-024-32556-y.
- 13 Z. A. Qureshi, H. M. Ali, S. Khushnood, Int. J. Heat Mass Transf. 2018, 127, 838.
- 14 K. Yu, B. Jin, Y. Liu, L. Li, Mater. Res. Express 2019, 6, 125503.
- 15 X. Zou, J. Liu, Energy Rep. 2020, 6, 2948.
- 16 H. Sivasankaran, Y. Takata, M. Kohno, Volume 6B: Energy, ASME 2014, https://doi.org/10.1115/IMECE2014-36841.
- 17 C. Xu, W. Wang, H. Zhang, G. Fang, Thermochim. Acta 2022, 715, 179300.
- 18 A. Benkaddour, M. Faraji, H. Faraji, Mater. Today Proc. 2020, 30, 905.
- 19 S. Rana, H. Zahid, R. Kumar, R. S. Bharj, P. K. S. Rathore, H. M. Ali, J. Energy Storage 2024, 81, 110372.
- 20 A. Al-Ahmed, M. A. J. Mazumder, B. Salhi, A. Sari, M. Afzaal, F. A. Al-Sulaiman, J. Energy Storage 2021, 35, 102329.
- 21 Y. Xie, Y. Yang, Y. Liu, S. Wang, X. Guo, H. Wang, D. Cao, Adv. Compos. Hybrid Mater. 2021, 4, 543.
- 22 P. Prabhu, S. Sawant, Mater. Today Proc. 2023, 72, 810.
- 23 N. Tan, T. Xie, P. Hu, Y. Feng, Q. Li, S. Zhao, H.-N. Zhou, W.-B. Zeng, J.-L. Zeng, J. Energy Storage 2021, 34, 102016.
- 24 F. Zhu, C. Zhang, X. Gong, Appl. Therm. Eng. 2016, 109, 373.
- 25 X. Zhang, Z. Wang, X. Liu, T. Shi, F. Lin, Y. Xu, G. Chen, W. Zhang, Z. Huang, ACS Appl. Energy Mater. 2021, 4, 9124.
- 26 C. Zhu, F. Ran, G. Fang, J. Energy Storage 2020, 27, 101163.
- 27 K. Bilisik, M. Akter, J. Mater. Sci. 2022, 57, 7425.
- 28 P. Cataldi, A. Athanassiou, I. Bayer, Appl. Sci. 2018, 8, 1438.
- 29
A. Islam, A. K. Pandey, R. Saidur, V. V. Tyagi, Mater. Today Sustainability 2024, 25, 100678.
10.1016/j.mtsust.2024.100678 Google Scholar
- 30 X. K. Yu, Y. B. Tao, Int. J. Heat Mass Transf. 2022, 198, 123433.
- 31 G. Zhang, Y. Sun, C. Wu, X. Yan, W. Zhao, C. Peng, Energy Rep. 2023, 9, 2538.
- 321.3: Measurements, Uncertainty and Significant Figures - Physics LibreTexts.
- 33 S. Ramakrishnan, X. Wang, J. Sanjayan, E. Petinakis, J. Wilson, Sol. Energy 2017, 158, 626.
- 34 B. Kalaidasan, A. K. Pandey, S. Shahabuddin, M. George, K. Sharma, M. Samykano, V. V. Tyagi, R. Saidur, Renew Energy 2021, 173, 1057.
- 35 M. Ouikhalfan, A. Sarı, G. Hekimoğlu, O. Gencel, V. V. Tyagi, Surf. Interfaces 2022, 32, 102176.
- 36 R. Wen, X. Zhu, C. Yang, Z. Sun, L. Zhang, Y. Xu, J. Qiao, X. Wu, X. Min, Z. Huang, J. Energy Storage 2022, 46, 103921.
- 37 J. Zhang, T. Ragab, M. Wang, W. Wang, Y. Zhu, H. Zhang, X. Wang, K. Jiang, Int. J. Therm. Sci. 2024, 195, 108617.
- 38 K. Balasubramanian, A. Kumar Pandey, R. Abolhassani, H.-G. Rubahn, S. Rahman, Y. Kumar Mishra, Chem. Eng. J. 2023, 462, 141984.
- 39 I. Ali, M. Samykano, A. K. Pandey, K. Kadirgama, J. Energy Storage 2022, 51, 104526.
- 40 Q. Zhang, F. Ma, L. Liu, W. Tan, M. Jing, L. Wang, M. Cai, H. Wang, J. Mater. Sci. 2023 59, 5147.
- 41 Y. A. Bhutto, A. K. Pandey, R. Saidur, B. Aljafari, V. V. Tyagi, J. Energy Storage 2023, 73, 109116.
- 42 A. Trigui, M. Abdelmouleh, Sustainability 2023, 15, 1957.
- 43
B. Kalaidasan, A. K. Pandey, R. Saidur, V. V. Tyagi, J. Energy Storage 2023, 58, 106361.
10.1016/j.est.2022.106361 Google Scholar
- 44 W. Liang, G. Zhang, H. Sun, P. Chen, Z. Zhu, A. Li, Sol. Energy Mater. Sol. Cells 2015, 132, 425.
- 45 I. A. Laghari, A. K. Pandey, M. Samykano, B. Aljafari, K. Kadirgama, K. Sharma, V. V. Tyagi, J. Therm. Anal. Calorim. 2023, 148, 9391.
- 46 M. S. Fuhrer, C. N. Lau, A. H. MacDonald, MRS Bull. 2010, 35, 289.
- 47 R. Wen, S. Zhu, M. Wu, W. Chen, J. Energy Storage 2021, 41, 102936.
- 48 A. Elbasiony, A. Sharshir, M. G.-O. Materials, Opt. Mater. 2024, 148, 14811.
- 49 M. Wang, M. Liu, P. Li, F. Yu, J. Energy Storage 2021, 44, 103461.
- 50 A. Islam, A. K. Pandey, R. Saidur, B. Aljafari, V. V. Tyagi, J. Energy Storage 2023, 74, 109380.
- 51 H. Faraji, M. Alami, A. Arshad, Y. Hariti, J. Therm. Sci. Eng. Appl. 2021, 13, 051010.
- 52 V. V. Tyagi, K. Chopra, B. Kalidasan, A. Chauhan, U. Stritih, S. Anand, A. K. Pandey, A. Sarı, R. Kothari, Sustainable Energy Technol. Assess. 2021, 47, 101318.
- 53 X. Du, S. Wang, Z. Du, X. Cheng, H. Wang, J. Mater. Chem. A 2018, 6, 17519.
- 54 S. Sharma, L. Micheli, W. Chang, A. A. Tahir, K. S. Reddy, T. K. Mallick, Appl. Energy 2017, 208, 719.
- 55 A. A. M. Omara, J. Energy Storage 2021, 44, 103421.
- 56 P. Sundaram, A. Kalaisselvane, A. Sathishkumar, S. C. GaneshKumarKim, R. Prabakaran, J. Energy Storage 2023, 64, 107219.
- 57
R. Reji Kumar, M. Samykano, A. K. Pandey, K. Kadirgama, V. V. Tyagi, Renewable Sustainable Energy Rev. 2020, 133, 110341.
10.1016/j.rser.2020.110341 Google Scholar
- 58 M. A. Abdelkareem, H. M. Maghrabie, A. G. Abo-Khalil, O. H. K. Adhari, E. T. Sayed, A. Radwan, K. Elsaid, T. Wilberforce, A. G. Olabi, J. Energy Storage 2022, 50, 104385.
- 59 A. Mourad, A. Aissa, Z. Said, O. Younis, M. Iqbal, A. Alazzam, J. Energy Storage 2022, 49, 104186.
- 60 Z. Wang, C. Du, R. Qi, Y. Wang, Appl. Therm. Eng. 2022, 216, 119072.
- 61 N. Zheng, C. Zhang, R. Fan, Z. Sun, J. Energy Storage 2022, 52, 105052.
- 62 S. Li, X. Dong, X. Lin, D. Shao, G. Zhang, J. Deng, X. Yang, J. Energy Storage 2021, 44, 103447.
- 63 G. Ye, G. Zhang, L. Jiang, X. Yang, Chem. Eng. J. 2022, 449, 137733.
- 64 Q. Huang, J. Deng, X. Li, G. Zhang, F. Xu, J. Energy Storage 2020, 32, 101755.
- 65 X. Lin, X. Zhang, L. Liu, J. Liang, W. Liu, J. Clean. Prod. 2022, 331, 130014.