N-Doped Carbon-Coated Mixed-Phase SnS–SnS2 Anode with Carbon Nanofibers Skeleton for Improving Dual-Ion Battery in Concentrated Electrolyte
Yaobing Fang
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 519175 China
Search for more papers by this authorWen Zheng
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 519175 China
Search for more papers by this authorTao Hu
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 519175 China
Search for more papers by this authorLi Li
School of Environment and Energy, South China University of Technology, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Wenhui Yuan
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 519175 China
Search for more papers by this authorYaobing Fang
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 519175 China
Search for more papers by this authorWen Zheng
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 519175 China
Search for more papers by this authorTao Hu
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 519175 China
Search for more papers by this authorLi Li
School of Environment and Energy, South China University of Technology, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Wenhui Yuan
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 519175 China
Search for more papers by this authorAbstract
Metal sulfides exhibit great potential for anode material due to the lamellar structure. However, the intrinsic low conductivity and large volume expansion result in poor cycle stability. Herein, a porous hierarchical structure (SnS–SnS2)–NC–CF anode material composed of carbon nanofibers skeleton and N-doped carbon is designed, and a full dual-ion battery based on the anode is constructed, coupled with natural graphite and high-concentration electrolyte (6 M LiTFSI + 5% vinylene carbonate). The graphite/(SnS-SnS2)–NC–CF dual-ion battery shows a high initial discharge specific capacity up to 154.3 mAh g−1 at a current density of 100 mA g−1 in a working voltage window of 1.0–4.0 V. Also, the battery obtains a considerable capacity of 67.1 mAh g−1 at the high current density of 1000 mA g−1 and achieves an excellent cycling performance up to 2000 cycles with remarkable Coulombic efficiency near 100%. In addition, the battery exhibits a low self-discharge of 1.83% h−1 and superior fast charge performance. Furthermore, the results of the X-ray diffraction and scanning electron microscope characterizations further demonstrate good reversibility and stability. Consequently, this work provides a feasible strategy for the design of a high performance dual-ion battery energy storage device.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ente202200917-sup-0001-SuppData-S1.pdf742.6 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Zhu, Y. Xu, Y. Fu, D. Xiao, Y. Li, L. Liu, Y. Wang, Q. Zhang, J. Li, X. Yan, Small 2020, 16, 1905838.
- 2J. Xu, S. Dou, X. Cui, W. Liu, Z. Zhang, Y. Deng, W. Hu, Y. Chen, Energy Storage Mater. 2021, 34, 85.
- 3S. Peng, X. Zhou, S. Tunmee, Z. Li, P. Kidkhunthod, M. Peng, W. Wang, H. Saitoh, F. Zhang, Y. Tang, ACS Sustainable Chem. Eng. 2021, 9, 3710.
- 4X. Chang, X. Zhou, X. Ou, C. S. Lee, J. Zhou, Y. Tang, Adv. Energy Mater. 2019, 9, 1902672.
- 5K. V. Kravchyk, M. V. Kovalenko, Adv. Energy Mater. 2020, 10, 2002151.
- 6I. A. Rodríguez-Pérez, L. Zhang, J. M. Wrogemann, D. M. Driscoll, M. L. Sushko, K. S. Han, J. L. Fulton, M. H. Engelhard, M. Balasubramanian, V. V. Viswanathan, V. Murugesan, X. Li, D. Reed, V. Sprenkle, M. Winter, T. Placke, Adv. Energy Mater. 2020, 10, 2001256.
- 7Z. Jian, S. Hwang, Z. Li, A. S. Hernandez, X. Wang, Z. Xing, D. Su, X. Ji, Adv. Funct. Mater. 2017, 27, 1700324.
- 8W. H. Li, H. J. Liang, X. K. Hou, Z. Y. Gu, X. X. Zhao, J. Z. Guo, X. Yang, X. L. Wu, J. Energy Chem. 2020, 50, 416.
- 9K. Yang, Q. Liu, Y. Zheng, H. Yin, S. Zhang, Y. Tang, Angew. Chem. Int. Ed. 2021, 60, 6326.
- 10D. Gong, C. Wei, D. Xie, Y. Tang, Chem. Eng. J. 2022, 431, 133444.
- 11M. Zhang, J. Zhong, W. Kong, L. Wang, T. Wang, H. Fei, H. Luo, J. Zhu, J. Hu, B. Lu, Energy Environ. Mater. 2020, 4, 413.
10.1002/eem2.12086 Google Scholar
- 12R. Wang, Z. Li, G. Xu, X. Liu, Y. Huang, X. Wei, L. Yang, Solid State Ionics 2020, 353, 115373.
- 13X. Shi, T. Deng, G. Zhu, Ceram. Int. 2020, 46, 24887.
- 14Y. Zhu, Y. Lei, Z. Liu, Y. Yuan, H. N. Alshareef, Nano Energy 2021, 81, 105539.
- 15Z. Li, M. Peng, X. Zhou, K. Shin, S. Tunmee, X. Zhang, C. Xie, H. Saitoh, Y. Zheng, Z. Zhou, Y. Tang, Adv. Mater. 2021, 33, 2100793.
- 16M. Peng, K. Shin, L. Jiang, Y. Jin, K. Zeng, X. Zhou, Y. Tang, Angew. Chem. Int. Ed. 2022, 61, 202206770.
- 17M. Liang, X. Li, Y. Kang, N. ur RehmanLashari, X. Zhang, Y. Zhao, H. Wang, Z. Miao, C. Fu, J. Power Sources 2022, 535, 231486.
- 18X. Wang, Z. Yao, S. Hwang, L. Zhang, M. Fu, S. Li, L. Mai, Q. Xu, D. Su, Nano Energy 2021, 79, 105458.
- 19X. Shi, S. L. Chen, H. N. Fan, X. H. Chen, D. Yuan, Q. Tang, A. Hu, W. Bin Luo, H. K. Liu, ChemSusChem 2019, 12, 4046.
- 20J. Rehman, X. Fan, W. T. Zheng, Appl. Surf. Sci. 2019, 496, 143625.
- 21J. Xia, K. Jiang, J. Xie, S. Guo, L. Liu, Y. Zhang, S. Nie, Y. Yuan, H. Yan, X. Wang, Chem. Eng. J. 2019, 359, 1244.
- 22R. T. Yadlapalli, R. K. R. Alla, R. Kandipati, A. Kotapati, J. Energy Storage 2022, 49, 104194.
- 23Z. Liu, A. Daali, G. L. Xu, M. Zhuang, X. Zuo, C. J. Sun, Y. Liu, Y. Cai, M. D. Hossain, H. Liu, K. Amine, Z. Luo, Nano Lett. 2020, 20, 3844.
- 24Z. Syum, B. Venugopal, A. Sabbah, T. Billo, T. C. Chou, H. L. Wu, L. C. Chen, K. H. Chen, J. Power Sources 2021, 482, 228923.
- 25T. C. Ribeiro, R. Reis, D. C. Ferreira, D. R. Miquita, G. A. S. Ribeiro, M. S. C. Mazzoni, A. Malachias, T. Chagas, R. Magalhaes-Paniago, Appl. Surf. Sci. 2022, 591, 153153.
- 26G. Mohan Kumar, X. Fu, P. Ilanchezhiyan, S. U. Yuldashev, D. J. Lee, H. D. Cho, T. W. Kang, ACS Appl. Mater. Interfaces 2017, 9, 32142.
- 27R. E. Abutbul, A. R. Garcia-Angelmo, Z. Burshtein, M. T. S. Nair, P. K. Nair, Y. Golan, CrystEngComm 2016, 18, 5188.
- 28L. Yin, H. Li, R. Cheng, J. Yang, X. Kong, J. Huang, X. Wang, J. Mater. Sci. Mater. Electron. 2021, 32, 191.
- 29P. Sinsermsuksakul, J. Heo, W. Noh, A. S. Hock, R. G. Gordon, Adv. Energy Mater. 2011, 1, 1116.
- 30A. M. Tripathi, S. Mitra, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2016, 213, 69.
- 31K. Pichaimuthu, A. Jena, H. Chang, C. Su, S. F. Hu, R. S. Liu, ACS Appl. Mater. Interfaces 2022, 14, 5834.
- 32Z. Kong, M. Huang, Z. Liang, H. Tu, K. Zhang, Y. Shao, Y. Wu, X. Hao, Inorg. Chem. Front. 2022, 9, 902.
- 33Y. Huang, R. Ding, D. Ying, T. Yan, Y. Huang, C. Tan, X. Sun, E. Liu, J. Alloys Compd. 2022, 891, 161905.
- 34Q. Guo, K. Il Kim, H. Jiang, L. Zhang, C. Zhang, D. Yu, Q. Ni, X. Chang, T. Chen, H. Xia, X. Ji, Adv. Funct. Mater. 2020, 30, 2002825.
- 35L. Sui, X. Shi, T. Deng, H. Yang, H. Liu, H. Chen, W. Zhang, W. Zheng, J. Energy Chem. 2019, 37, 7.
- 36A. Kotronia, H. D. Asfaw, C. W. Tai, M. Hahlin, D. Brandell, K. Edström, ACS Appl. Mater. Interfaces 2021, 13, 3867.
- 37Y. Wang, Y. Zhang, Q. Duan, P. K. Lee, S. Wang, D. Y. W. Yu, J. Power Sources 2020, 471, 228466.
- 38Y. B. Fang, W. Zheng, T. Hu, L. Li, W. H. Yuan, ACS Omega 2022, 7, 7616.
- 39L. Lyu, J. Hu, K. Cheng, D. Lin, K. Li, Z. Lu, H. Yao, L. Zhou, Carbon N. Y. 2022, 188, 177.
- 40M. Xia, J. Nie, Z. Zhang, X. Lu, Z. L. Wang, Nano Energy 2018, 47, 43.
- 41Z. Lv, M. Han, J. Sun, L. Hou, H. Chen, Y. Li, M. C. Lin, J. Power Sources 2019, 418, 233.
- 42Z. Li, X. Li, W. Zhang, J. Power Sources 2020, 475, 228628.
- 43Y. Fang, C. Chen, J. Fan, M. Zhang, W. Yuan, L. Li, Chem. Commun. 2019, 55, 8333.
- 44Z. Li, J. Liu, J. Li, F. Kang, F. Gao, Carbon N. Y. 2018, 138, 52.
- 45W. Zhu, Y. Huang, B. Jiang, R. Xiao, J. Mol. Liq. 2021, 339, 116789.
- 46S. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Electrochem. Commun. 2015, 60, 172.
- 47B. Heidrich, A. Heckmann, K. Beltrop, M. Winter, T. Placke, Energy Storage Mater. 2019, 21, 414.
- 48S. B. Patil, H. J. Liao, D. Y. Wang, Phys. Chem. Chem. Phys. 2020, 22, 24842.
- 49Y. F. Meng, H. J. Liang, C. De Zhao, W. H. Li, Z. Y. Gu, M. X. Yu, B. Zhao, X. K. Hou, X. L. Wu, J. Energy Chem. 2022, 64, 166.
- 50J. Li, C. Han, X. Ou, Y. Tang, Angew. Chem. Int. Ed. 2022, 61, e202116668.
- 51G. Zhang, X. Ou, J. Yang, Y. Tang, Small Methods 2021, 5, 2100374.
- 52A. Wang, W. Yuan, J. Fan, L. Li, Energy Technol. 2018, 6, 2172.
- 53M. Latha, J. Vatsala Rani, J. Electrochem. Soc. 2020, 167, 070501.
- 54Y. Zheng, T. Deng, N. Yue, W. Zhang, X. Zhu, H. Yang, X. Chu, W. Zheng, J. Raman Spectrosc. 2021, 52, 2119.