Biomass Waste-Derived Solar Evaporator for Efficient and Low-Cost Water Evaporation
Sainan Ma
Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang Province, 315000 China
The State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027 China
Search for more papers by this authorQianqian Wang
Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang Province, 315000 China
The State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027 China
Search for more papers by this authorKe Chen
Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang Province, 315000 China
Search for more papers by this authorWeiyong Yuan
Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang Province, 315000 China
The State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027 China
Search for more papers by this authorXiang Gao
The State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027 China
Search for more papers by this authorCorresponding Author
Nian Li
Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang Province, 315000 China
Search for more papers by this authorNeng Gao
Institute of Energy and Environment Engineering, NingboTech University, Ningbo, Zhejiang Province, 315000 China
Search for more papers by this authorSainan Ma
Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang Province, 315000 China
The State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027 China
Search for more papers by this authorQianqian Wang
Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang Province, 315000 China
The State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027 China
Search for more papers by this authorKe Chen
Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang Province, 315000 China
Search for more papers by this authorWeiyong Yuan
Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang Province, 315000 China
The State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027 China
Search for more papers by this authorXiang Gao
The State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027 China
Search for more papers by this authorCorresponding Author
Nian Li
Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang Province, 315000 China
Search for more papers by this authorNeng Gao
Institute of Energy and Environment Engineering, NingboTech University, Ningbo, Zhejiang Province, 315000 China
Search for more papers by this authorAbstract
Solar-driven interfacial water evaporation is a green and energy-saving water treatment technology, yet key issues remain the low efficiency, high cost, and complicated fabrication of solar evaporators. With a unique natural structure, good environmental friendliness, and low cost, biomass-based materials have attracted extensive research interest as solar absorbers. Herein, banana peel, one of the most common biomass wastes, is adopted as raw material for solar water evaporation and subjected to a carbonization process. The carbonized banana peel (CBP) presents a dark rough surface and a hierarchically inner porous structure, resulting in good solar absorption and water transfer ability. Consequently, a high water evaporation rate of 1.35 kg m−2 h−1 and corresponding solar-to-vapor conversion efficiency of 87.5% are achieved under 1 sun irradiation. Furthermore, the CBP also exhibits outstanding performance in seawater desalination and wastewater purification. This work demonstrates a sustainable strategy for low-cost and efficient solar-driven water purification.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ente202200900-sup-0001-SuppData-S1.pdf697 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) M. M. Mekonnen, A. Y. Hoekstra, Sci. Adv. 2016, 2, 1500323; b) P. Greve, T. Kahil, J. Mochizuki, T. Schinko, Y. Satoh, P. Burek, G. Fischer, S. Tramberend, R. Burtscher, S. Langan, Y. Wada, Nat. Sustainable 2018, 1, 486.
- 2 M. Elimelech, W. A. Phillip, Science 2011, 333, 712.
- 3 R. F. Service, Science 2006, 313, 1088.
- 4 A. Lenert, E. N. Wang, Sol. Energy 2012, 86, 253.
- 5a) P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, T. Deng, Nat. Energy 2018, 3, 1031; b) L. Zhou, X. Li, G. W. Ni, S. Zhu, J. Zhu, Natl. Sci. Rev. 2019, 6, 562; c) C. Chen, Y. Kuang, L. Hu, Joule 2019, 3, 683; d) R. Zhu, M. Liu, Y. Hou, D. Wang, L. Zhang, D. Wang, S. Fu, Chem. Eng. J. 2021, 423, 129099.
- 6a) W. He, L. Zhou, M. Wang, Y. Cao, X. Chen, X. Hou, Sci. Bull. 2021, 66, 1472; b) Z. Wang, T. Horseman, A. P. Straub, N. Y. Yip, D. Li, M. Elimelech, S. Lin, Sci. Adv. 2019, 5, eaax0763; c) Y. Lu, H. Zhang, D. Fan, Z. Chen, X. Yang, J. Hazard. Mater. 2022, 423, 127128.
- 7a) L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, Nat. Photonics 2016, 10, 393; b) H. Wang, R. Zhang, D. Yuan, S. Xu, L. Wang, Adv. Funct. Mater. 2020, 30, 2003995.
- 8a) T. Yang, H. Lin, K.-T. Lin, B. Jia, Sustain. Mater. Technol. 2020, 25, 00182; b) I. Indriyati, F. A. Primadona, M. A. Irham, M. Nasir, F. Iskandar, Nanoscale 2021, 13, 7523.
- 9a) S. Zuo, D. Xia, Z. Guan, F. Yang, S. Cheng, H. Xu, R. Wan, D. Li, M. Liu, Sep. Purif. Technol. 2021, 254, 117611; b) W. Huang, P. Su, Y. Cao, C. Li, D. Chen, X. Tian, Y. Su, B. Qiao, J. Tu, X. Wang, Nano Energy 2020, 69, 104465.
- 10a) Z. Li, X. Ma, D. Chen, X. Wan, X. Wang, Z. Fang, X. Peng, Adv. Sci. 2021, 8, 2004552; b) R. Zhu, D. Wang, J. Xie, Y. Liu, M. Liu, S. Fu, J. Chem. Eng. 2022, 427, 131618.
- 11a) Z. Wang, Y. Liu, P. Tao, Q. Shen, N. Yi, F. Zhang, Q. Liu, C. Song, D. Zhang, W. Shang, T. Deng, Small 2014, 10, 3234; b) L. Zhou, S. Zhuang, C. He, Y. Tan, Z. Wang, J. Zhu, Nano Energy 2017, 32, 195.
- 12a) H. Hu, Z. Wang, Q. Ye, J. He, X. Nie, G. He, C. Song, W. Shang, J. Wu, P. Tao, T. Deng, ACS Appl. Mater. Interfaces 2016, 8, 20483; b) J. Fang, Q. Liu, W. Zhang, J. Gu, Y. Su, H. Su, C. Guo, D. Zhang, J. Mater. Chem. 2017, 5, 17817.
- 13 Y. Liu, Z. Liu, Q. Huang, X. Liang, X. Zhou, H. Fu, Q. Wu, J. Zhang, W. Xie, J. Mater. Chem. 2019, 7, 2581.
- 14 A. F. Zedan, S. Moussa, J. Terner, G. Atkinson, M. S. El-Shall, ACS Nano 2013, 7, 627.
- 15 F. Gong, W. Wang, H. Li, D. Xia, Q. Dai, X. Wu, M. Wang, J. Li, D. V. Papavassiliou, R. Xiao, Appl. Energy 2020, 261, 114410.
- 16a) D.-D. Han, Z.-D. Chen, J.-C. Li, J.-W. Mao, Z.-Z. Jiao, W. Wang, W. Zhang, Y.-L. Zhang, H.-B. Sun, ACS Appl. Mater. Interfaces 2020, 12, 25435; b) C. T. K. Finnerty, A. K. Menon, K. M. Conway, D. Lee, M. Nelson, J. J. Urban, D. Sedlak, B. Mi, Environ. Sci. Technol. 2021, 55, 15435.
- 17a) P. Cao, L. Zhao, Z. Yang, P. Yuan, Y. Zhang, Q. Li, ACS Appl. Nano Mater. 2021, 4, 8906; b) R. Zhu, D. Wang, Y. Liu, M. Liu, S. Fu, J. Chem. Eng. 2022, 433, 133510.
- 18 Y. Liu, J. Chen, D. Guo, M. Cao, L. Jiang, ACS Appl. Mater. Interfaces 2015, 7, 13645.
- 19 Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, M. Chen, Adv. Mater. 2015, 27, 4302.
- 20 Y. Wang, L. Zhang, P. Wang, ACS Sustainable Chem. Eng. 2016, 4, 1223.
- 21a) S. Ma, C. P. Chiu, Y. Zhu, C. Y. Tang, H. Long, W. Qarony, X. Zhao, X. Zhang, W. H. Lo, Y. H. Tsang, Appl. Energy 2017, 206, 63;
b) F. Gong, H. Li, X. Yuan, J. Huang, D. Xia, D. V. Papavassiliou, R. Xiao, Y. Yamauchi, K. C. W. Wu, Y. S. Ok, Small 2021, 17, 2170244.
10.1002/smll.202170244 Google Scholar
- 22a) J. Yang, Y. Chen, X. Jia, Y. Li, S. Wang, H. Song, ACS Appl. Mater. Interfaces 2020, 12, 47029; b) C. Jia, Y. Li, Z. Yang, G. Chen, Y. Yao, F. Jiang, Y. Kuang, G. Pastel, H. Xie, B. Yang, S. Das, L. Hu, Joule 2017, 1, 588; c) Y. Lu, D. Fan, Z. Shen, H. Zhang, H. Xu, X. Yang, Nano Energy 2022, 95, 107016; d) Z. Shen, D. Fan, H. Zhang, J. Jing, H. Xu, H. Min, Y. Lu, X. Yang, J. Xu, Sol. RRL 2022, 6, 2200483.
- 23 G. Xue, K. Liu, Q. Chen, P. Yang, J. Li, T. Ding, J. Duan, B. Qi, J. Zhou, ACS Appl. Mater. Interfaces 2017, 9, 15052.
- 24a) J. Liu, J. Yao, Y. Yuan, Q. Liu, W. Zhang, X. Zhang, J. Gu, Adv. Sustainable Syst. 2020, 4, 2000126; b) P. Zhang, M. Xie, Y. Jin, C. Jin, Z. Wang, ACS Appl. Polym. Mater. 2022, 4, 2393; c) C. Sheng, N. Yang, Y. Yan, X. Shen, C. Jin, Z. Wang, Q. Sun, Appl. Therm. Eng. 2020, 167, 114712.
- 25 N. Xu, X. Hu, W. Xu, X. Li, L. Zhou, S. Zhu, J. Zhu, Adv. Mater. 2017, 29, 1606762.
- 26 M. Zhu, J. Yu, C. Ma, C. Zhang, D. Wu, H. Zhu, Sol. Energy Mater. Sol. Cells 2019, 191, 83.
- 27 J. Fang, J. Liu, J. Gu, Q. Liu, W. Zhang, H. Su, D. Zhang, Chem. Mater. 2018, 30, 6217.
- 28 Y. Lu, X. Wang, D. Fan, H. Yang, H. Xu, H. Min, X. Yang, Sustainable Mater. Technol. 2020, 25, e00180.
- 29 R. Zhu, D. Wang, J. Zhang, Z. Yu, M. Liu, S. Fu, Desalination 2022, 527, 115585.
- 30 H. Wang, C. Zhang, B. Zhou, Z. Zhang, J. Shen, A. Du, Adv. Sustainable Syst. 2021, 5, 2000244.
- 31 C. Wang, J. Wang, Z. Li, K. Xu, T. Lei, W. Wang, J. Mater. Chem. 2020, 8, 9528.
- 32 Z. Zhang, Z. Feng, H. Qi, Y. Chen, Y. Chen, Q. Deng, S. Wang, Sustainable Mater. Technol. 2022, 32, 00414.
- 33 Y. Zhang, S. K. Ravi, S. C. Tan, Nano Energy 2019, 65, 104006.
- 34 N. Zhou, H. Chen, J. Xi, D. Yao, Z. Zhou, Y. Tian, X. Lu, Bioresour. Technol. 2017, 232, 204.
- 35 M. G. Tadesse, E. Kasaw, B. Fentahun, E. Loghin, J. F. Lübben, Energies 2022, 15, 2471.
- 36 E. M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W. P. Kalisvaart, M. Hazelton, D. Mitlin, ACS Nano 2014, 8, 7115.
- 37 J. Sodtipinta, C. Ieosakulrat, N. Poonyayant, P. Kidkhunthod, N. Chanlek, T. Amornsakchai, P. Pakawatpanurut, Ind. Crops Prod. 2017, 104, 13.
- 38 H. N. Chanakya, I. Sharma, T. V. Ramachandra, J. Waste Manage. 2009, 29, 1306.
- 39 Z. Xie, J. Zhu, L. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 9027.
- 40a) Y.-Y. Ma, C.-X. Wu, X.-J. Feng, H.-Q. Tan, L.-K. Yan, Y. Liu, Z.-H. Kang, E.-B. Wang, Y.-G. Li, Energy Environ. Sci. 2017, 10, 788; b) S. Ma, W. Qarony, M. I. Hossain, C. T. Yip, Y. H. Tsang, Sol. Energy Mater. Sol. Cells 2019, 196, 36.
- 41 X. Liu, D. D. Mishra, Y. Li, L. Gao, H. Peng, L. Zhang, C. Hu, ACS Sustainable Chem. Eng. 2021, 9, 4571.