Electrodeless Nanogenerator for Dust Recover
Wanli Wang
College of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao, 266071 China
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580 China
Search for more papers by this authorDongfang Yang
Xi'an Traffic Engineering Institute, Xi'an, 710300 China
Search for more papers by this authorZhenxing Huang
Qingdao Haier Washing Machine Co., Ltd, Qingdao, 26000 China
Search for more papers by this authorHan Hu
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580 China
Search for more papers by this authorLicheng Wang
School of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023 China
Search for more papers by this authorCorresponding Author
Kai Wang
College of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorWanli Wang
College of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao, 266071 China
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580 China
Search for more papers by this authorDongfang Yang
Xi'an Traffic Engineering Institute, Xi'an, 710300 China
Search for more papers by this authorZhenxing Huang
Qingdao Haier Washing Machine Co., Ltd, Qingdao, 26000 China
Search for more papers by this authorHan Hu
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580 China
Search for more papers by this authorLicheng Wang
School of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023 China
Search for more papers by this authorCorresponding Author
Kai Wang
College of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao, 266071 China
Search for more papers by this authorAbstract
Triboelectric nanogenerator (TENG) has the advantages of low cost, low weight, simple structure, and high efficiency. It is a promising low-frequency mechanical energy capture technology, which shows great potential in dealing with energy and environmental crisis and promoting new electronic products. TENGs have demonstrated irreplaceable design freedom over traditional electronic devices, including its ability to work independently of electrodes. In fact, the displacement current is an unreal current, it can work independently without electrodes. Moreover, due to the lack of “shielding effect” of the electrode, the surface potential can be larger than devices worked with electrodes. Here, based on TENG's high-voltage characteristic without electrode, the application of dust removal is explored, and a kind of electrodeless polyethylene triboelectric blackboard eraser was demonstrated as an example, which can effectively restrain the flying of chalk dust (limit the dust diffusion within 0.648 m). The electrostatic charge decayed blackboard eraser can be recharged by the electrodeless TENG without requirement of electrodes establishment. In fact, contact electrification may happen frequently in natural environment, and further design may be achieved without the limitation of electrodes.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ente202200699-sup-0001-SuppData-S1.zip67 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. S. Choi, S.-W. Kim, S. Kar-Narayan, Adv. Energy Mater. 2021, 11, 2003802.
- 2F.-R. Fan, Z.-Q. Tian, Z. L. Wang, Nano Energy 2012, 1, 328.
- 3Z. L. Wang, ACS Nano 2013, 7, 9533.
- 4G. Zhu, J. Chen, T. Zhang, Q. Jing, Z. L. Wang, Nat. Commun. 2014, 5, 3426.
- 5W. Wang, J. Pang, J. Su, F. Li, Q. Li, X. Wang, J. Wang, B. Ibarlucea, X. Liu, Y. Li, W. Zhou, K. Wang, Q. Han, L. Liu, R. Zang, M. H. Rummeli, Y. Li, H. Liu, H. Hu, G. Cuniberti, Infomat 2022, 4, e12262.
- 6J. V. Vidal, V. Slabov, A. L. Kholkin, M. P. Soares dos Santos, Nano-Micro Lett. 2021, 13, 199.
- 7S. Wang, Y. Xie, S. Niu, L. Lin, Z. L. Wang, Adv. Mater. 2014, 26, 2818.
- 8Y. Liu, J. Mo, Q. Fu, Y. Lu, N. Zhang, S. Wang, S. Nie, Adv. Funct. Mater. 2020, 30, 2004714.
- 9R. Zhang, Q. Xu, S. Bai, J. Hai, L. Cheng, G. Xu, Y. Qin, Nano Energy 2021, 79, 105434.
- 10Z. Cui, L. Kang, L. Li, L. Wang, K. Wang, Energy 2022, 259, 124933.
- 11Y. Guo, P. Yu, C. Zhu, K. Zhao, L. Wang, K. Wang, Int. J. Energy Res. 2022, https://doi.org/10.1002/er.8671.
- 12D. Li, D. Yang, L. Li, L. Wang, K. Wang, Energies 2022, 15, 6665.
- 13S. Chandrasekaran, C. Bowen, J. Roscow, Y. Zhang, D. Dinh Khoi, E. J. Kim, R. D. K. Misra, L. Deng, J. S. Chung, S. H. Hur, Phys. Rep. 2019, 792, 1.
- 14Q. Liang, Q. Zhang, X. Yan, X. Liao, L. Han, F. Yi, M. Ma, Y. Zhang, Adv. Mater. 2017, 29, 1604961.
- 15Y. Bai, C. B. Han, C. He, G. Q. Gu, J. H. Nie, J. J. Shao, T. X. Xiao, C. R. Deng, Z. L. Wang, Adv. Funct. Mater. 2018, 28, 1706680.
- 16K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park, J. Xiong, P. S. Lee, Nat. Commun. 2019, 10, 2158.
- 17Z. Ren, Q. Zheng, H. Wang, H. Guo, L. Miao, J. Wan, C. Xu, S. Cheng, H. Zhang, Nano Energy 2020, 67, 104243.
- 18Z. Zhang, N. Yin, Z. Wu, S. Pan, D. Wang, Nano Energy 2021, 79, 105501.
- 19L. Zhou, D. Liu, S. Li, Z. Zhao, C. Zhang, X. Yin, L. Liu, S. Cui, L. Wang Zhong, J. Wang, Adv. Energy Mater. 2020, 10, 2000965.
- 20M. Bi, Z. Wu, S. Wang, Z. Cao, Y. Cheng, X. Ma, X. Ye, Nano Energy 2020, 75, 104968.
- 21R. Hinchet, A. Ghaffarinejad, Y. Lu, J. Y. Hasani, S.-W. Kim, P. Basset, Nano Energy 2018, 47, 401.
- 22J. Shao, M. Willatzen, T. Jiang, W. Tang, X. Chen, J. Wang, Z. L. Wang, Nano Energy 2019, 59, 380.
- 23X. Cui, Y. Zhang, G. Hu, L. Zhang, Y. Zhang, Nano Energy 2020, 70, 104513.
- 24Y. Chen, Y. Jie, N. Wang, Z. L. Wang, X. Cao, Nano Energy 2020, 76, 105051.
- 25J. Chen, Z. L. Wang, Joule 2017, 1, 480.
- 26J. Shao, D. Liu, M. Willatzen, Z. L. Wang, Appl. Phys. Rev. 2020, 7, 011405.
- 27X. Pu, Z. L. Wang, Chem. Sci. 2021, 12, 34.
- 28G. Q. Gu, C. B. Han, C. X. Lu, C. He, T. Jiang, Z. L. Gao, C. J. Li, Z. L. Wang, ACS Nano 2017, 11, 6211.
- 29Z. L. Wang, Mater. Today 2017, 20, 74.
- 30J. Mo, C. Zhang, Y. Lu, Y. Liu, N. Zhang, S. Wang, S. Nie, Nano Energy 2020, 78, 105357.
- 31X. Guo, J. Shao, M. Willatzen, Y. Yang, Z. L. Wang, Nano Energy 2022, 92, 106762.
- 32J. Shao, Y. Yang, O. Yang, J. Wang, M. Willatzen, Z. L. Wang, Adv. Energy Mater. 2021, 11, 2100065.
- 33Z. L. Wang, Rep. Prog. Phys. 2021, 84, 096502.
- 34G. Liu, J. Nie, C. Han, T. Jiang, Z. Yang, Y. Pang, L. Xu, T. Guo, T. Bu, C. Zhang, Z. L. Wang, ACS Appl. Mater. Interfaces 2018, 10, 7126.
- 35C. He, Z. L. Wang, Prog. Nat. Sci. 2018, 28, 99.
- 36H.-J. Yoon, D.-H. Kim, W. Seung, U. Khan, T. Y. Kim, T. Kim, S.-W. Kim, Nano Energy 2019, 63, 103857.
- 37Y. Wang, Y. Xu, D. Wang, Y. Zhang, X. Zhang, J. Liu, Y. Zhao, C. Huang, X. Jin, ACS Appl. Mater. Interfaces 2019, 11, 48437.
- 38G.-H. Zhang, Q.-H. Zhu, L. Zhang, F. Yong, Z. Zhang, S.-L. Wang, Y. Wang, L. He, G.-H. Tao, Nat. Commun. 2020, 11, 1653.
- 39S. Chen, C. Gao, W. Tang, H. Zhu, Y. Han, Q. Jiang, T. Li, X. Cao, Z. Wang, Nano Energy 2015, 14, 217.
- 40B. Ghatak, S. Banerjee, S. B. Ali, R. Bandyopadhyay, N. Das, D. Mandal, B. Tudu, Nano Energy 2021, 79, 105387.
- 41C. B. Han, T. Jiang, C. Zhang, X. Li, C. Zhang, X. Cao, Z. L. Wang, ACS Nano 2015, 9, 12552.
- 42J. L. Allen, X. Liu, S. Pelkowski, B. Palmer, K. Conrad, G. Oberdoerster, D. Weston, M. Mayer-Proschel, D. A. Cory-Slechta, Environ. Health Perspect. 2014, 122, 939.
- 43K. S. Han, S. Lee, M. Kim, P. Park, M. H. Lee, J. Nah, Adv. Funct. Mater. 2019, 29, 1903633.
- 44X. Li, X. Yin, W. Wang, H. Zhao, D. Liu, L. Zhou, C. Zhang, J. Wang, Nano Energy 2019, 56, 792.
- 45M. Ma, Z. Zhang, Q. Liao, G. Zhang, F. Gao, X. Zhao, Q. Zhang, X. Xun, Z. Zhang, Y. Zhang, Nano Energy 2017, 39, 524.
- 46Q. Fu, Y. Liu, J. Mo, Y. Lu, C. Cai, Z. Zhao, S. Wang, S. Nie, ACS Nano 2021, 15, 10577.
- 47D. Chen, L. Tang, Y. Wang, Y. Tan, Y. Fu, W. Cai, Z. Yu, S. Sun, J. Zheng, J. Cui, G. Wang, Y. Liu, H. Zhou, ACS Appl. Mater. Interfaces 2022, 14, 17774.
- 48Z. Cui, L. Kang, L. Li, L. Wang, K. Wang, Renewable Energy 2022, 98, 1328
- 49C. Liu, D. Li, L. Wang, L. Li, K. Wang, APL Mater. 2022, 10, 061106.
- 50H. Sun, D. Yang, L. Wang, K. Wang, Int. J. Energy Res. 2022, https://doi.org/10.1002/ER.8709.
- 51Y. Cheng, C. Wang, J. Zhong, S. Lin, Y. Xiao, Q. Zhong, H. Jiang, N. Wu, W. Li, S. Chen, B. Wang, Y. Zhang, J. Zhou, Nano Energy 2017, 34, 562.
- 52H. Guo, J. Chen, L. Wang, A. C. Wang, Y. Li, C. An, J.-H. He, C. Hu, V. K. S. Hsiao, Z. L. Wang, Nat. Sustainability 2021, 4, 147.
- 53R. Hao, S. Yang, K. Yang, Z. Zhang, T. Wang, S. Sang, H. Zhang, ACS Appl. Energy Mater. 2021, 4, 14700.
- 54Y. Feng, L. Ling, J. Nie, K. Han, X. Chen, Z. Bian, H. Li, Z. L. Wang, ACS Nano 2017, 11, 12411.