3D Cellulose Graphene Aerogel with Self-Redox CeO2 as Li2S Host for High-Performance Li–S Battery
Hao Yu
National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorXi Zhou
National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorPeng Zeng
National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorChangmeng Guo
National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorHong Liu
National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorXiaowei Guo
School of Chemistry & Material Engineering, Xinxiang University, Xinxiang, Henan, 453003 China
Search for more papers by this authorBaobao Chang
Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan, 450001 China
Search for more papers by this authorCorresponding Author
Manfang Chen
National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorCorresponding Author
Jincang Su
National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorCorresponding Author
Xianyou Wang
National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorHao Yu
National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorXi Zhou
National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorPeng Zeng
National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorChangmeng Guo
National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorHong Liu
National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorXiaowei Guo
School of Chemistry & Material Engineering, Xinxiang University, Xinxiang, Henan, 453003 China
Search for more papers by this authorBaobao Chang
Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan, 450001 China
Search for more papers by this authorCorresponding Author
Manfang Chen
National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorCorresponding Author
Jincang Su
National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorCorresponding Author
Xianyou Wang
National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan, 411105 China
Search for more papers by this authorAbstract
Lithium sulfide is considered the promising cathode material of a Li–S battery because of its high theoretical capacity, high melting point, affordable volume expansion, and lithium composition. However, the quick capacity fading and high activation energy barrier due to low electronic and ionic conductivity and polysulfide shuttle effect still restrict the practical application of the Li2S cathode. Herein, CeO2 is introduced with unique self-redox characteristics into cellulose graphene aerogel (CGA) with the 3D interconnected structure (CGA/CeO2) as the host of Li2S. It is found that CGA/CeO2 can provide plentiful three-phase boundary for the chemisorption to LiPSs through the strong polarity of CeO2. Moreover, the ultrastrong polarity of CeO2 can restrain the LiPSs shuttle, and CeO2 can spontaneously oxidize polysulfide, thus boosting the conversion reaction kinetics and comprehensive electrochemical performances of Li–S battery based on Li2S cathode. As a result, these features reciprocate Li2S-CGA/CeO2 cathode excellent electrochemical performances. Therefore, this work not only provides a significant exploration for the mechanical explanation of the cerium oxide catalytic conversion reaction but also provides a brand-new idea for the excellent electric catalyst for the catalytic conversion reaction of polysulfide in lithium–sulfide batteries.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
ente202200616-sup-0001-SuppData-S1.pdf571.9 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 K. Sheng, Q. Yi, A. Chen, Y. Wang, Y. Yan, H. Nie, X. Zhou, ACS Appl. Mater. Interfaces 2021, 13, 45394.
- 2 Q. Yi, Q. Chen, Z. Yang, J. Power Sources 2015, 298, 171.
- 3 L. Yu, Q. Yi, X. Yang, Y. Chen, Sci. China Mater. 2019, 62, 1251.
- 4 M. Liu, P. Zhang, Z. Qu, Y. Yan, C. Lai, T. Liu, S. Zhang, Nat. Commun. 2019, 10, 3917.
- 5
H. Chen, Z. Wu, M. Zheng, T. Liu, C. Yan, J. Lu, S. Zhang, Mater. Today 2021, 52, 364.
10.1016/j.mattod.2021.10.026 Google Scholar
- 6 F. Wu, M. Liu, Y. Li, X. Feng, K. Zhang, Y. Bai, X. Wang, C. Wu, Electrochem. Energy Rev. 2021, 4, 382.
- 7
A. Liu, X. Liang, X. Ren, W. Guan, T. Ma, Electrochem. Energy Rev. 2021, 5, 112.
10.1007/s41918-021-00110-w Google Scholar
- 8 Y. He, Y. Zhao, Y. Zhang, Z. He, G. Liu, J. Li, C. Liang, Q. Li, Energy Storage Mater. 2022, 47, 434.
- 9 K. Yuan, L. Yuan, J. Xiang, Y. Liao, J. Chen, Y. Huang, ACS Appl. Mater. Interfaces 2022, 14, 698.
- 10 Y. He, M. Li, Y. Zhang, Z. Shan, Y. Zhao, J. Li, G. Liu, C. Liang, Z. Bakenov, Q. Li, Adv. Funct. Mater. 2020, 30, 2000613.
- 11 S. Li, D. Leng, W. Li, L. Qie, Z. Dong, Z. Cheng, Z. Fan, Energy Storage Mater. 2020, 27, 279.
- 12 Y. Yan, P. Zhang, Z. Qu, M. Tong, S. Zhao, Z. Li, M. Liu, Z. Lin, Nano Lett. 2020, 20, 7662.
- 13 D. Su, D. Zhou, C. Wang, G. Wang, Adv. Funct. Mater. 2018, 28, 1800154.
- 14 H. Liu, Y. Li, P. Zeng, H. Yu, X. Zhou, M. Chen, C. Miao, G. Chen, Q. Liu, Z. Luo, X. Wang, Chem. Eng. J. 2021, 426, 130744.
- 15 Z. Jiao, L. Chen, J. Si, C. Xu, Y. Jiang, Y. Zhu, Y. Yang, B. Zhao, J. Power Sources 2017, 353, 167.
- 16 M. Yu, S. Zhou, Z. Wang, W. Pei, X. Liu, C. Liu, C. Yan, X. Meng, S. Wang, J. Zhao, J. Qiu, Adv. Funct. Mater. 2019, 29, 1905986.
- 17 S. Luo, F. Wu, G. Yushin, Mater. Today 2021, 49, 253.
- 18 C. Shang, L. Cao, M. Yang, Z. Wang, M. Li, G. Zhou, X. Wang, Z. Lu, Energy Storage Mater. 2019, 18, 375.
- 19 Z. Kong, Y. Li, Y. Wang, Y. Zhang, K. Shen, X. Chu, H. Wang, J. Wang, L. Zhan, Chem. Eng. J. 2020, 392, 123697.
- 20 H. Yu, P. Zeng, H. Liu, X. Zhou, C. Guo, Y. Li, S. Liu, M. Chen, X. Guo, B. Chang, T. Wu, X. Wang, ACS Appl. Mater. Interfaces 2021, 13, 32968.
- 21 Z. Li, Y. Cao, G. Li, L. Chen, W. Xu, M. Zhou, B. He, W. Wang, Z. Hou, Electrochim. Acta 2021, 366, 137466.
- 22 J. Tan, D. Li, Y. Liu, P. Zhang, Z. Qu, Y. Yan, H. Hu, H. Cheng, J. Zhang, M. Dong, J. Mater. Chem. A 2020, 8, 7980.
- 23 Y. Liu, Y. Yan, K. Li, Y. Yu, Q. Wang, M. Liu, Chem. Commun. 2019, 55, 1084.
- 24 M. Liu, Q. Meng, Z. Yang, X. Zhao, T. Liu, Chem. Commun. 2018, 54, 5090.
- 25 H. Liu, M. Chen, P. Zeng, X. Li, J. Luo, Y. Li, T. Xing, B. Chang, X. Wang, Z. Luo, ACS Sustainable Chem. Eng. 2020, 8, 351.
- 26 H. Liu, P. Zeng, Y. Li, H. Yu, M. Chen, Z. Luo, C. Miao, G. Chen, X. Wang, J. Alloys Compd. 2020, 835, 155421.
- 27 H. Liu, P. Zeng, H. Yu, X. Zhou, Z. Li, M. Chen, C. Miao, G. Chen, T. Wu, X. Wang, Electrochim. Acta 2021, 396, 139238.
- 28 M. Kim, J. Lee, Y. Jeon, Y. Piao, Nanoscale 2019, 11, 13758.
- 29 D. Liu, C. Zhang, G. Zhou, W. Lv, G. Ling, L. Zhi, Q. Yang, Adv. Sci. 2018, 5, 1700270.
- 30 D. Lei, K. Shi, H. Ye, Z. Wan, Y. Wang, L. Shen, B. Li, Q. Yang, F. Kang, Y. He, Adv. Funct. Mater. 2018, 28, 1707570.
- 31 Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang, G. Wang, Adv. Mater. 2021, 33, 2003666.
- 32 X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L. F. Nazar, Nat. Commun. 2015, 6, 5682.
- 33 S. Zhao, Y. Kang, M. Liu, B. Wen, Q. Fang, Y. Tang, S. He, X. Ma, M. Liu, Y. Yan, J. Mater. Chem. A 2021, 9, 18927.
- 34 C. Cao, J. Xie, S. Zhang, B. Pan, G. Cao, X. Zhao, J. Mater. Chem. A 2017, 5, 6747.
- 35 J. Liu, M. Dai, T. Wang, P. Sun, X. Liang, G. Lu, K. Shimanoe, N. Yamazoe, ACS Appl. Mater. Interfaces 2016, 8, 6669.
- 36 Z. Ye, J. Li, M. Zhou, H. Wang, Y. Ma, P. Huo, L. Yu, Y. Yan, Chem. Eng. J. 2016, 304, 917.
- 37 N. Bibi, Y. Xia, S. Ahmed, Y. Zhu, S. Zhang, A. Iqbal, Ceram. Int. 2018, 44, 22262.
- 38 D. Xiao, C. Lu, C. Chen, S. Yuan, Energy Storage Mater. 2018, 10, 216.
- 39 D. Gueon, J. Yoon, J. T. Hwang, J. H. Moon, Chem. Eng. J. 2020, 390, 124548.
- 40 S. Dong, Y. Zhao, J. Yang, W. Li, W. Luo, S. Li, X. Liu, H. Guo, C. Yu, J. Sun, J. Feng, Y. Zhu, Chem. Eng. J. 2022, 431, 133824.
- 41 T. Wang, D. Su, Y. Chen, K. Yan, L. Yu, L. Liu, Y. Zhong, P. H. L. Notten, C. Wang, G. Wang, Chem. Eng. J. 2020, 401, 126079.
- 42 W. Qi, W. Jiang, F. Xu, J. Jia, C. Yang, B. Cao, Chem. Eng. J. 2020, 382, 122852.
- 43 H. Yu, P. Zeng, X. Zhou, C. Guo, X. Liu, K. Wang, X. Guo, B. Chang, M. Chen, X. Wang, ACS Appl. Mater. Interfaces 2021, 13, 54113.
- 44 L. Fan, K. Wang, K. Xu, Z. Liang, H. Wang, S. F. Zhou, G. Zhan, Small 2020, 16, 2003597.
- 45 L. Jiang, M. Yao, B. Liu, Q. Li, R. Liu, H. Lv, S. Lu, C. Gong, B. Zou, T. Cui, B. Liu, G. Hu, T. Wågberg, J. Phys. Chem. C 2012, 116, 11741.
- 46 C. Yang, R. A. Wong, M. Hong, K. Yamanaka, T. Ohta, H. R. Byon, Nano Lett. 2016, 16, 2969.
- 47 X. Li, L. Pan, Y. Wang, C. Xu, Electrochim. Acta 2016, 190, 548.
- 48 W. Qi, W. Yi, W. Jiang, R. Ling, C. Yang, S. Liu, S. C. Jun, Y. Yamauchi, B. Cao, ACS Sustainable Chem. Eng. 2021, 9, 14451.
- 49 B. Qiu, C. Wang, N. Zhang, L. Cai, Y. Xiong, Y. Chai, ACS Catal. 2019, 9, 6484.
- 50 M. Zhang, W. Chen, L. Xue, Y. Jiao, T. Lei, J. Chu, J. Huang, C. Gong, C. Yan, Y. Yan, Y. Hu, X. Wang, J. Xiong, Adv. Energy Mater. 2019, 10, 1903008.
- 51 H. Lin, S. Zhang, T. Zhang, H. Ye, Q. Yao, G. W. Zheng, J. Y. Lee, Adv. Energy Mater. 2018, 8, 1801868.
- 52 H. Wang, B. Zhang, X. Zeng, L. Yan, J. Zheng, M. Ling, Y. Hou, Y. Lu, C. Liang, J. Power Sources 2020, 473, 228588.
- 53 J. Zhang, Q. Rao, B. Jin, J. Lu, Q. He, Y. Hou, Z. Li, X. Zhan, F. Chen, Q. Zhang, Chem. Eng. J. 2020, 388, 124120.
- 54 G. Babu, N. Masurkar, H. Al Salem, L. M. R. Arava, J. Am. Chem. Soc. 2017, 139, 171.
- 55 X. Liang, Y. Rangom, C. Y. Kwok, Q. Pang, L. F. Nazar, Adv Mater. 2017, 29, 1603040.
- 56 Y. Yang, G. Zheng, S. Misra, J. Nelson, M. F. Toney, Y. Cui, J. Am. Chem. Soc. 2012, 134, 15387.
- 57 J. He, Y. Chen, W. Lv, K. Wen, C. Xu, W. Zhang, W. Qin, W. He, ACS Energy Lett. 2016, 1, 820.
- 58 X. Huang, Z. Wang, R. Knibbe, B. Luo, S. A. Ahad, D. Sun, L. Wang, Energy Technol. 2019, 7, 1801001.
- 59 W. Zhu, Z. Zhang, J. Wei, Y. Jing, W. Guo, Z. Xie, D. Qu, D. Liu, H. Tang, J. Li, J. Membr. Sci. 2020, 597, 117646.
- 60 L. Ma, R. Chen, G. Zhu, Y. Hu, Y. Wang, T. Chen, J. Liu, Z. Jin, ACS Nano 2017, 11, 7274.
- 61 J. Wang, B. Zhou, H. Zhao, M. Wu, Y. Yang, X. Sun, D. Wang, Y. Du, Mater. Chem. Front. 2019, 3, 1317.
- 62 C. Wang, W. Cai, G. Li, B. Liu, Z. Li, Chemelectrochem 2018, 5, 112.