Projecting Recent Advancements in Battery Technology to Next-Generation Electric Vehicles
Sangwook Kim
Energy Storage & Electric Transportation Department, Idaho National Laboratory, Idaho Falls, ID, 83415 USA
Search for more papers by this authorTanvir R. Tanim
Energy Storage & Electric Transportation Department, Idaho National Laboratory, Idaho Falls, ID, 83415 USA
Search for more papers by this authorCorresponding Author
Eric J. Dufek
Energy Storage & Electric Transportation Department, Idaho National Laboratory, Idaho Falls, ID, 83415 USA
Search for more papers by this authorDon Scoffield
Energy Storage & Electric Transportation Department, Idaho National Laboratory, Idaho Falls, ID, 83415 USA
Search for more papers by this authorTimothy D. Pennington
Energy Storage & Electric Transportation Department, Idaho National Laboratory, Idaho Falls, ID, 83415 USA
Search for more papers by this authorKevin L. Gering
Energy Storage & Electric Transportation Department, Idaho National Laboratory, Idaho Falls, ID, 83415 USA
Search for more papers by this authorAndrew M. Colclasure
Center for Energy Conversion & Storage Systems, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Search for more papers by this authorWeijie Mai
Center for Energy Conversion & Storage Systems, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Search for more papers by this authorAndrew Meintz
Center for Integrated Mobility Sciences, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Search for more papers by this authorJesse Bennett
Center for Integrated Mobility Sciences, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Search for more papers by this authorSangwook Kim
Energy Storage & Electric Transportation Department, Idaho National Laboratory, Idaho Falls, ID, 83415 USA
Search for more papers by this authorTanvir R. Tanim
Energy Storage & Electric Transportation Department, Idaho National Laboratory, Idaho Falls, ID, 83415 USA
Search for more papers by this authorCorresponding Author
Eric J. Dufek
Energy Storage & Electric Transportation Department, Idaho National Laboratory, Idaho Falls, ID, 83415 USA
Search for more papers by this authorDon Scoffield
Energy Storage & Electric Transportation Department, Idaho National Laboratory, Idaho Falls, ID, 83415 USA
Search for more papers by this authorTimothy D. Pennington
Energy Storage & Electric Transportation Department, Idaho National Laboratory, Idaho Falls, ID, 83415 USA
Search for more papers by this authorKevin L. Gering
Energy Storage & Electric Transportation Department, Idaho National Laboratory, Idaho Falls, ID, 83415 USA
Search for more papers by this authorAndrew M. Colclasure
Center for Energy Conversion & Storage Systems, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Search for more papers by this authorWeijie Mai
Center for Energy Conversion & Storage Systems, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Search for more papers by this authorAndrew Meintz
Center for Integrated Mobility Sciences, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Search for more papers by this authorJesse Bennett
Center for Integrated Mobility Sciences, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Search for more papers by this authorThe publisher acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article, or allow others to do so, for United States Government purposes only.
Abstract
Electric vehicles (EVs) have seen rapid growth in adoption over the last several years. Advancements to increase battery life and performance, policy shifts, and high charging rate are expected to further accelerate the development of next generation of EVs. Battery improvements continue to emerge, enabling increased driving range, total distance driven over the life of vehicles, and ability to charge at high rates. Herein, an analysis framework to provide insights into inclusive design metrics, such as specific energy of batteries, energy consumption of vehicles, and charging power infrastructure development, is developed. Various cell-level fast charge protocols to realistic battery designs to understand the infrastructure needs associated with achieving range replacement of 32.25 km min−1 (20 mi min−1) are also scaled. By calculating scaled power and peak to average power ratio, it is found that there needs to be more distinct alignment between the research efforts focused at the cell level and what is being developed for EV charging infrastructure needs. Finally, impact of high direct current voltage architecture in next-generation EVs is discussed. The findings in this work provide an insight into recent advancements in battery technology to next-generation EVs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1 Light Duty Electric Drive Vehicles Monthly Sales Updates 2021, https://www.anl.gov/es/light-duty-electric-drive-vehicles-monthly-sales-updates (accessed: June 2021).
- 2 New Plug-in Electric Vehicle Sales in the United States Nearly Doubled from 2020 to 2021, https://www.energy.gov/energysaver/articles/new-plug-electric-vehicle-sales-united-states-nearly-doubled-2020-2021 (accessed: June 2021).
- 3 Global EV Outlook 2021, Int Energy Agency 2021, https://www.iea.org/reports/global-ev-outlook-2021 (accessed: June 2021).
- 4A. F. Hof, M. G. J. den Elzen, A. Mendoza Beltran, Int. Environ. Agreements Polit. Law Econ. 2016, 16, 375.
- 5 Governor Newsom Announces California Will Phase Out Gasoline-Powered Cars & Drastically Reduce Demand for Fossil Fuel in California's Fight Against Climate Change, https://www.gov.ca.gov/2020/09/23/governor-newsom-announces-california-will-phase-out-gasoline-powered-cars-drastically-reduce-demand-for-fossil-fuel-in-californias-fight-against-climate-change/ (accessed: June 2021).
- 6 U.S. State Clean Vehicle Policies and Incentives 2019, https://www.c2es.org/document/us-state-clean-vehicle-policies-and-incentives/ (accessed: June 2021).
- 7Q. Qiao, H. Lee, https://www.belfercenter.org/publication/role-electric-vehicles-decarbonizing-chinas-transportation-sector (accessed: June 2021).
- 8R. B. Carlson, F. Dias, E. J. Dufek, C. J. Michelbacher, M. Mohanpurkar, D. Scoffield, M. Shirk, T. Tanim, China's New Energy Vehicle Mandate Policy. https://theicct.org/publication/chinas-new-energy-vehicle-mandate-policy-final-rule/ (accessed: June 2021).
- 9S. Ahmed, I. Bloom, A. Burnham, K. Hardy, A. N. Jansen, P. A. Nelson, D. C. Robertson, T. Stephens, R. Vijayagopal, VW Expects Half of U.S. Sales to be Electric Vehicles by 2030 2021, https://www.cnbc.com/2021/03/05/vw-expects-half-of-us-sales-to-be-electric-vehicles-by-2030.html (accessed: June 2021).
- 10 Ford Ups EV Investments, Targets 40% Electric Car Sales by 2030 under Latest Turnaround Plan 2021, https://www.cnbc.com/2021/05/26/ford-ups-ev-investments-targets-40percent-electric-car-sales-by-2030-under-latest-turnaround-plan.html (accessed: June 2021).
- 11M. Keyser, C. Kreuzer, O. Li, A. Markel, A. Meintz, A. Pesaran, S. Santhanagopalan, K. Smith, E. Wood, J. Zhang, General Motors Plans to Exclusively Offer Electric Vehicles by 2035 2021, https://www.cnbc.com/2021/01/28/general-motors-plans-to-exclusively-offer-electric-vehicles-by-2035.html (accessed: June 2021).
- 12C. Niu, H. Lee, S. Chen, Q. Li, J. Du, W. Xu, J.-G. Zhang, M. S. Whittingham, J. Xiao, J. Liu, Nat. Energy 2019, 4, 551.
- 13J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, J.-G. Zhang, Nat. Energy 2019, 4, 180.
- 14D. Howell, S. Boyd, B. Cunningham, S. Gillard, L. Slezak, S. Ahmed, et al., https://www.energy.gov/eere/vehicles/downloads/enabling-extreme-fast-charging-technology-gap-assessment/ (accessed: May 2022).
- 15F. M. Eltoumi, M. Becherif, A. Djerdir, H. S. Ramadan, Renewable Sustainable Energy Rev. 2021, 138, 110534.
- 16T. U. Solanke, P. K. Khatua, V. K. Ramachandaramurthy, J. Y. Yong, K. M. Tan, Renewable Sustainable Energy Rev. 2021, 144, 111020.
- 17M. Muratori, E. Kontou, J. Eichman, Renewable Sustainable Energy Rev. 2019, 113, 109235.
- 18A. Burnham, E. J. Dufek, T. Stephens, J. Francfort, C. Michelbacher, R. B. Carlson, J. Zhang, R. Vijayagopal, F. Dias, M. Mohanpurkar, D. Scoffield, K. Hardy, M. Shirk, R. Hovsapian, S. Ahmed, I. Bloom, A. N. Jansen, M. Keyser, C. Kreuzer, A. Markel, A. Meintz, A. Pesaran, T. R. Tanim, J. Power Sources 2017, 367, 237.
- 19 2014 Tesla Model S (85 kW-hr battery pack), https://www.fueleconomy.gov/feg/Find.do?action=sbs&id=34775/ (accessed: May 2022).
- 20 Tesla Model S., http://roperld.com/science/TeslaModelS.htm/ (accessed: May 2022).
- 21 Inside the Battery of a Nissan Leaf, https://qnovo.com/inside-the-battery-of-a-nissan-leaf/ (accessed: May 2022).
- 22 How Long Will a Nissan Leaf Last? (Useful Guide), https://enginepatrol.com/how-long-nissan-leaf-last/ (accessed: May 2022).
- 23 Chevrolet Bolt EV– 2017, https://media.chevrolet.com/media/us/en/chevrolet/vehicles/bolt-ev/2017.tab1.html/ (accessed: May 2022).
- 24 Tesla Model 3 and Chevy Bolt Battery Packs Examined, https://cleantechnica.com/2018/07/08/tesla-model-3-chevy-bolt-battery-packs-examined/ (accessed: May 2022).
- 25 2018 Tesla Model 3 Long Range Tested: Can It Live Up to the Hype? https://www.caranddriver.com/reviews/a19642264/2018-tesla-model-3-test-review/ (accessed: May 2022).
- 26 Audi Details Battery for 2019 e-tron Electric SUV, www.greencarreports.com/news/1116347_audi-details-battery-for-2019-e-tron-electric-suv/ (accessed: May 25, 2022).
- 27 Jaguar I-Pace 90.2kWh Mass, https://www.secondlife-evbatteries.com/products/jaguar-i-pace-90-2kwh-pack/ (accessed: May 2022).
- 28 OFFICIAL : Jaguar I-Pace Range Just 234 Miles, MPGe Figures Disaapoint, https://insideevs.com/news/340422/official-jaguar-i-pace-range-just-234-miles-mpge-figures-disappoint/ (accessed: May 2022).
- 29 2022 Kia EV6 US Specs Compared: Battery, Range, Price and More, https://insideevs.com/news/565543/kia-ev6-comparison-battery-range/ (accessed: May 2022).
- 30T. Pennington, Directed Electric Charging of Transportation using eXtreme Fast charging (DirectXFC), 2020, p. ELT257 https://www.energy.gov/sites/default/files/2021-07/elt257_pennington_2021_o_5-28_1142am_LR_ML.pdf (accessed: June 2022).
- 31 United States Advanced Battery Consortium (USABC), Electric Vehicle Battery Test Procedure Manual, 2015 https://www.osti.gov/biblio/1186745-battery-test-manual-electric-vehicles-revision (accessed: June 2022).
- 32K. Zhu, C. Wang, Z. Chi, F. Ke, Y. Yang, A. Wang, W. Wang, L. Miao, Front Energy Res. 2019, 7, 1.
- 33G. Zhao, X. Wang, M. Negnevitsky, IScience 2022, 25, 103744.
- 34 Tesla Vehicle Warranty 2021, https://www.tesla.com/support/vehicle-warranty (accessed: June 2021).
- 35Chevrolet Bolt EV, http://www.roperld.com/science/chevybolt.htm (accessed: June 2021).
- 36 Jaguar I-Pace Warranty 2021, https://www.jaguarusa.com/about-jaguar/elitecare.html (accessed: June 2021).
- 37T. R. Tanim, M. G. Shirk, R. L. Bewley, E. J. Dufek, B. Y. Liaw, J. Power Sources 2018, 381, 56.
- 38 Tesla Supercharger 2021, https://www.tesla.com/support/supercharging (accessed: June 2021).
- 39 Porsche Opens Europe's most Powerful Rapid-Charging Park in Leipzig 2020, https://newsroom.porsche.com/en/2020/company/porsche-turbo-charging-europes-most-powerful-rapid-charging-park-leipzig-19995.html (accessed: June 2021).
- 40 CHAdeMO Association, https://www.chademo.com/wp2016/wp-content/uploads/2016/12/2016-06-01-High-power-CHAdeMO.pdf (accessed: June 2021).
- 41 CharIN, Industry Statement on Future Charging Infrastructure 2018, https://www.charin.global/media/pages/technology/knowledge-base/f73201c08e-1615552578/021180529_charin_industry_statement_charging_infrastructure_v2_0.pdf (accessed: June 2021).
- 42 The Battery: Sophisticated Thermal Management, 800-Volt System Voltage 2020, https://newsroom.porsche.com/en/products/taycan/battery-18557.html (accessed: June 2021).
- 43T. R. Tanim, Z. Yang, A. M. Colclasure, P. R. Chinnam, P. Gasper, Y. Lin, L. Yu, P. J. Weddle, J. Wen, E. J. Dufek, I. Bloom, K. Smith, C. C. Dickerson, M. C. Evans, Y. Tsai, A. R. Dunlop, S. E. Trask, B. J. Polzin, A. N. Jansen, Energy Storage Mater. 2021, 41, 656.
- 44T. R. Tanim, P. P. Paul, V. Thampy, C. Cao, H.-G. Steinrück, J. Nelson Weker, M. F. Toney, E. J. Dufek, M. C. Evans, A. N. Jansen, B. J. Polzin, A. R. Dunlop, S. E. Trask, Cell Rep. Phys. Sci. 2020, 1, 100114.
10.1016/j.xcrp.2020.100114 Google Scholar
- 45W. Mai, A. M. Colclasure, K. Smith, J. Electrochem. Soc. 2020, 167, 080517.
- 46T. R. Tanim, E. J. Dufek, M. Evans, C. Dickerson, A. N. Jansen, B. J. Polzin, A. R. Dunlop, S. E. Trask, R. Jackman, I. Bloom, Z. Yang, E. Lee, J. Electrochem. Soc. 2019, 166, A1926.
- 47P. Keil, A. Jossen, J. Energy Storage 2016, 6, 125.
- 48E. J. Dufek, D. P. Abraham, I. Bloom, B. R. Chen, P. R. Chinnam, A. M. Colclasure, K. L. Gering, M. Keyser, S. Kim, W. Mai, D. C. Robertson, M.-T. F. Rodrigues, K. Smith, T. R. Tanim, F. L. E. Usseglio-Viretta, P. J. Weddlem, J. Power Sources 2022, 526, 231129.
- 49S. Kim, Z. Yi, B. R. Chen, T. R. Tanim, E. J. Dufek, Energy Storage Mater. 2022, 45, 1002.
- 50D. Chen, J. Jiang, G. H. Kim, C. Yang, A. Pesaran, Appl. Therm. Eng. 2016, 94, 846.
- 51 Liquid Cooling in Electric Vehicles — What to Know to Keep EVs on the Go, 2019, https://www.cpcworldwide.com/Portals/0/Library/Resources/Literature/WhitePapers/Documents/CPC-Liquid%20Cooling%20in%20Electric%20Vehicles.pdf/ (accessed: May 2022).
- 52 2014 Tesla Model S 85 kWh - Advanced Vehicle Testing, 2016, https://avt.inl.gov/sites/default/files/pdf/fsev/fact2014teslamodels.pdf/ (accessed May 2022).
- 53A. Sharma, P. Zanotti, L. P. Musunur, IEEE Access 2019, 7, 170961.
- 54 A Look Inside A Tesla Battery Cell Shows Superiority Over Standard 18650 - Video, https://insideevs.com/news/333368/a-look-inside-a-tesla-battery-cell-shows-superiority-over-standard-18650-video/ (accessed: May 2022).
- 55 2019 Tesla Impact Report, https://www.tesla.com/ns_videos/2019-tesla-impact-report.pdf/ (accessed: May 2022).
- 56E. D. Kostopoulos, G. C. Spyropoulos, J. K. Kaldellis, Energy Rep. 2020, 6, 418.
- 57 Tesla's hacked Battery Management System Exposes the Real Usable Capacity of its Battery Packs, https://electrek.co/2016/12/14/tesla-battery-capacity/ (accessed: May 2022).
- 58J. Xiao, in US Dep. ENERGY, Veh. Technol. Off. Annu. Merit Rev. Peer Eval. Meet. 2021, p. BAT369 https://www.energy.gov/eere/vehicles/downloads/high-energy-rechargeable-lithium-metal-cells-fabrication-and-integration (accessed: June 2022).
- 59 Plug-in Electric Vehicle Handbook for Consumers, https://afdc.energy.gov/files/u/publication/pev_consumer_handbook.pdf (accessed: June 2021).
- 60BMW i3 2020, http://www.roperld.com/Science/BMWi3.htm (accessed: June 2021).
- 61Kia Niro 2021, https://www.kia.com/us/en/warranty (accessed: June 2021).
- 62Hyndai Kona 2021, https://www.hyundaiusa.com/us/en/vehicles/kona-electric (accessed: June 2021).
- 63 The Top 15 Cars Most Likely to Last 200,000 Miles or More 2020, https://www.roadandtrack.com/new-cars/g19661272/longest-lasting-cars/ (accessed: June 2021).
- 64X. Ren, L. Zou, X. Cao, M. H. Engelhard, W. Liu, S. D. Burton, H. Lee, C. Niu, B. E. Matthews, Z. Zhu, C. Wang, B. W. Arey, J. Xiao, J. Liu, J.-G. Zhang, W. Xu, Joule 2019, 3, 1662.
- 65 Tesla's V3 Supercharger 2019, https://www.motortrend.com/news/teslas-v3-supercharger-tested/ (accessed: June 2021).
- 66A. M. Colclasure, T. R. Tanim, A. N. Jansen, S. E. Trask, A. R. Dunlop, B. J. Polzin, I. Bloom, D. Robertson, L. Flores, M. Evans, E. J. Dufek, K. Smith, Electrochim. Acta 2020, 337, 135854.
- 67E. R. Logan, J. R. Dahn, Trends Chem 2020, 2, 354.
- 68P. Chinnam, A. M. Colclasure, B.-R. Chen, T. R. Tanim, E. J. Dufe, K. Smith, M. C. Evans, A. R. Dunlop, S. E. Trask, B. J. Polzin, A. N. Jansen, ACS Appl. Energy Mater. 2021, 4, 9133.
- 69M. Brenna, F. Foiadelli, C. Leone, M. Longo, J. Electr. Eng. Technol. 2020, 15, 2539.
- 70R. Mathieu, O. Briat, P. Gyan, J. M. Vinassa, in Proc. IECON 2018 - 44th Annu. Conf. IEEE Ind. Electron. Soc. (Washington, DC), 2018, pp. 1777–1782, https://doi.org/10.1109/IECON.2018.8591603.
10.1109/IECON.2018.8591603 Google Scholar
- 71E. Dufek, in US Dep. Energy, Veh Technol. Off. Annu. Merit Rev. Peer Eval. Meet 2021, p. BAT462.
- 72R. B. Carlson, Advanced Vehicle Testing Activity Benchmark Testing Of The Chevrolet Volt Onboard Charger 2012 https://www.osti.gov/biblio/1047194/ (accessed: June 2022).
10.2172/1047194 Google Scholar
- 73 BMW's Research Project “FastCharge” launches 450kW Prototype Station 2020, pp. 1–9, https://www.bmwblog.com/2018/12/13/bmws-research-project-fastcharge-launches-450kw-prototype-station/ (accessed: June 2021).
- 74A. Meintz, J. Zhang, R. Vijayagopal, C. Kreutzer, S. Ahmed, I. Bloom, A. Burnham, R. B. Carlson, F. Dias, E. J. Dufek, J. Francfort, K. Hardy, A. N. Jansen, M. Keyser, A. Markel, C. Michelbacher, M. Mohanpurkar, A. Pesaran, D. Scoffield, M. Shirk, T. Stephens, T. Tanim, J. Power Sources 2017, 367, 216.
- 75R. Collin, Y. Miao, A. Yokochi, P. Enjeti, A. Von Jouanne, Energies 2019, 12, 1839.
- 76 Lessons Learned on Early Fast Electric Vehicle Charging Systems 2018. https://theicct.org/sites/default/files/publications/ZEV_fast_charging_white_paper_final.pdf (accessed: June 2021).
- 77A. Dubey, S. Santoso, IEEE Access 2015, 3, 1871.
- 78L. Sun, N. Zhang, World Electr. Veh. J. 2016, 8, 196.
10.3390/wevj8010196 Google Scholar
- 79H. S. Jang, K. Y. Bae, B. C. Jung, D. K. Sung, Energy Build 2020, 223, 110155.
- 80Z. Wang, R. Paranjape, in 2015 IEEE Electr Power Energy Conf. Smarter Resilient Power Syst. EPEC 2016, pp. 45–49, https://doi.org/10.1109/EPEC.2015.7379925.
10.1109/EPEC.2015.7379925 Google Scholar
- 81C. Jung, IEEE Electrif. Mag. 2017, 5, 53.
- 82G. R. C. Mouli, J. Kaptein, P. Bauer, M. Zeman, in 2016 IEEE Transp. Electrif. Conf. Expo, ITEC Dearborn, Michigan 2016, https://doi.org/10.1109/ITEC.2016.7520271.
10.1109/ITEC.2016.7520271 Google Scholar
- 83K. Gryz, J. Karpowicz, P. Zradziński, Sensors 2022, 22, 1719.
- 84J. M. Moskowitz, Electromagnetic Radiation Safety. Class Charg Part 2020, pp. 106–22, https://www.saferemr.com/2014/07/shouldnt-hybrid-and-electric-cars-be-re.html/ (accessed: May 2022).