Review and Development of Anode Electrocatalyst Carriers for Direct Methanol Fuel Cell
Fei Chen
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, University of Science and Technology Beijing, Beijing, 100083 China
Energy Conservation and Environmental Protection Engineering Research Center, Universities of Beijing, Beijing, 100083 China
Search for more papers by this authorYaxin Sun
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, University of Science and Technology Beijing, Beijing, 100083 China
Energy Conservation and Environmental Protection Engineering Research Center, Universities of Beijing, Beijing, 100083 China
Search for more papers by this authorHuiyu Li
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, University of Science and Technology Beijing, Beijing, 100083 China
Energy Conservation and Environmental Protection Engineering Research Center, Universities of Beijing, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Congju Li
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, University of Science and Technology Beijing, Beijing, 100083 China
Energy Conservation and Environmental Protection Engineering Research Center, Universities of Beijing, Beijing, 100083 China
Search for more papers by this authorFei Chen
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, University of Science and Technology Beijing, Beijing, 100083 China
Energy Conservation and Environmental Protection Engineering Research Center, Universities of Beijing, Beijing, 100083 China
Search for more papers by this authorYaxin Sun
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, University of Science and Technology Beijing, Beijing, 100083 China
Energy Conservation and Environmental Protection Engineering Research Center, Universities of Beijing, Beijing, 100083 China
Search for more papers by this authorHuiyu Li
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, University of Science and Technology Beijing, Beijing, 100083 China
Energy Conservation and Environmental Protection Engineering Research Center, Universities of Beijing, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Congju Li
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083 China
Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, University of Science and Technology Beijing, Beijing, 100083 China
Energy Conservation and Environmental Protection Engineering Research Center, Universities of Beijing, Beijing, 100083 China
Search for more papers by this authorAbstract
Direct methanol fuel cell (DMFC) can be used as a promising portable power device due to its excellent energy conversion efficiency and low pollutant emissions. The performance of DMFC largely depends on the anode electrocatalyst for methanol oxidation reaction (MOR). As an important part of the electrocatalyst, the carrier greatly affects the activity and stability of the electrocatalyst. Herein, the research progress of carbonaceous carriers (such as activated carbon, nanostructured carbon), noncarbonaceous carriers (metal compounds), and conducting polymers in DMFC is reviewed. Furthermore, an overview of the development of self-supporting carriers for flexible DMFC electronics is presented. Its role as the most ideal DMFC carrier in the future provides new ideas for the challenges and development of the commercialization of flexible DMFC.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1N. Sazali, W. N. Wan Salleh, A. S. Jamaludin, M. N. Mhd Razali, Membranes 2020, 10, 99.
- 2M. A. Abdelkareem, K. Elsaid, T. Wilberforce, M. Kamil, E. T. Sayed, A. Olabi, Sci. Total Environ. 2021, 752, 141803.
- 3O. Z. Sharaf, M. F. Orhan, Renewable Sustainable Energy Rev. 2014, 32, 810.
- 4S. S. Munjewar, S. B. Thombre, R. K. Mallick, Ionics 2016, 23, 1.
- 5M. Mansor, S. N. Timmiati, K. L. Lim, W. Y. Wong, S. K. Kamarudin, N. H. Nazirah Kamarudin, Int. J. Hydrogen Energy 2019, 44, 14744.
- 6Z. A. C. Ramli, S. K. Kamarudin, Nanoscale Res. Lett. 2018, 13, 410.
- 7A. S. Mehr, A. Lanzini, M. Santarelli, M. A. Rosen, Energy 2021, 228, 120613.
- 8J. Peng, J. Huang, X.-L. Wu, Y.-W. Xu, H. Chen, X. Li, J. Power Sources 2021, 505, 230058.
- 9H. Wang, J. Zhang, X. Ning, M. Tian, Y. Long, S. Ramakrishna, Int. J. Hydrogen Energy 2021, 46, 25225.
- 10S. Du, Engineering 2021, 7, 33.
- 11M. S. Alias, S. K. Kamarudin, A. M. Zainoodin, M. S. Masdar, Int. J. Hydrogen Energy 2020, 45, 19620.
- 12L. Gong, Z. Yang, K. Li, W. Xing, C. Liu, J. Ge, J. Energy Chem. 2018, 27, 1618.
- 13H. Bahrami, A. Faghri, J. Power Sources 2013, 230, 303.
- 14M. Borghei, G. Scotti, P. Kanninen, T. Weckman, I. V. Anoshkin, A. G. Nasibulin, S. Franssila, E. I. Kauppinen, T. Kallio, V. Ruiz, Energy 2014, 65, 612.
- 15L. Yang, J. Ge, C. Liu, G. Wang, W. Xing, Curr. Opin. Electrochem. 2017, 4, 83.
- 16J. Calderón Gómez, R. Moliner, M. Lázaro, Catalysts 2016, 6, 130.
- 17C. Ding, F. Dong, Z. Tang, ChemistrySelect 2020, 5, 13318.
- 18A. Higareda, G. Rosas, R. Pérez, R. Esparza, ChemNanoMat 2021, 7, 958.
- 19J. Gu, W.-C. Liu, Z.-Q. Zhao, G.-X. Lan, W. Zhu, Y.-W. Zhang, Inorg. Chem. Front. 2014, 1, 109.
- 20Y. Wang, J. Yang, S. Sun, L. Wang, T. Guo, D. Zhang, Z. Xue, X. Zhou, Chem. Phys. Lett. 2019, 730, 575.
- 21C. Berghian-Grosan, T. Radu, A. R. Biris, M. Dan, C. Voica, F. Watanabe, A. S. Biris, A. Vulcu, J. Energy Chem. 2020, 40, 81.
- 22H. J. Mohammed, N. A. Ali, J. Phys.: Conf. Ser. 2019, 1234, 012006.
10.1088/1742-6596/1234/1/012006 Google Scholar
- 23Z. Z. Nori, A. Landarani-Isfahani, M. Bahadori, M. Moghadam, V. Mirkhani, S. Tangestaninejad, I. Mohammadpoor-Baltork, RSC Adv. 2020, 10, 33137.
- 24Z. Yao, R. Yue, F. Jiang, C. Zhai, F. Ren, Y. Du, J. Solid State Electrochem. 2013, 17, 2511.
- 25D. Liu, Q. Guo, H. Hou, O. Niwa, T. You, ACS Catal. 2014, 4, 1825.
- 26C. Ni, Y. Tang, H. R. S. Abdellatif, X. Huang, D. Xie, J. Ni, J. Electrochem. Soc. 2020, 167, 126505.
- 27H. Uchiyama, Y. Nakamura, S. Igarashi, RSC Adv. 2021, 11, 7442.
- 28S. Sharma, B. G. Pollet, J. Power Sources 2012, 208, 96.
- 29A. Kaur, G. Kaur, P. P. Singh, S. Kaushal, Int. J. Hydrogen Energy 2021, 46, 15820.
- 30S. Bong, D. Han, Electroanalysis 2019, 32, 104.
- 31A. Yuda, A. Ashok, A. Kumar, Catal. Rev. 2020, 64, 126.
- 32G. Li, B. Shi, Y. Gong, Y. Zhang, X. Wang, M. Guo, X. Lyu, Mater. Chem. Phys. 2020, 243, 122570.
- 33L. P. A. Guerrero-Ortega, E. Ramírez-Meneses, R. Cabrera-Sierra, L. M. Palacios-Romero, K. Philippot, C. R. Santiago-Ramírez, L. Lartundo-Rojas, A. Manzo-Robledo, J. Mater. Sci. 2019, 54, 13694.
- 34K. Peng, N. Bhuvanendran, S. Ravichandran, W. Zhang, Q. Ma, L. Xing, Q. Xu, L. Khotseng, H. Su, Int. J. Hydrogen Energy 2020, 45, 22752.
- 35J. Chen, Z. Ou, H. Chen, S. Song, K. Wang, Y. Wang, Chin. J. Catal. 2021, 42, 1297.
- 36J. Garcia-Cardona, F. Alcaide, E. Brillas, I. Sirés, P. L. Cabot, Catalysts 2021, 11, 724.
- 37M. Bello, S. M. J. Zaidi, A. Al-Ahmed, S. Basu, D.-H. Park, K. S. Lakhi, A. Vinu, Microporous Mesoporous Mater. 2017, 252, 50.
- 38Y. Zheng, X. Wan, X. Cheng, K. Cheng, Z. Dai, Z. Liu, Catalysts 2020, 10, 166.
- 39L. Saravanan, C.-M. Tseng, C.-C. Chang, Y.-C. Chung, Y.-C. Chung, C.-Y. Lin, A.-Y. Lo, C. R. Chim. 2020, 23, 343.
- 40L. Calvillo, M. J. Lázaro, E. García-Bordejé, R. Moliner, P. L. Cabot, I. Esparbé, E. Pastor, J. J. Quintana, J. Power Sources 2007, 169, 59.
- 41Y. Wang, C. He, A. Brouzgou, Y. Liang, R. Fu, D. Wu, P. Tsiakaras, S. Song, J. Power Sources 2012, 200, 8.
- 42H. Xue, T. Wang, J. Zhao, H. Gong, J. Tang, H. Guo, X. Fan, J. He, Carbon 2016, 104, 10.
- 43S. Basri, S. K. Kamarudin, W. R. W. Daud, Z. Yaakub, Int. J. Hydrogen Energy 2010, 35, 7957.
- 44J. Zhang, S. Lu, Y. Xiang, S. P. Jiang, ChemSusChem 2020, 13, 2484.
- 45L. Li, Y. Xing, Energies 2009, 2, 789.
- 46B. Wu, J. Zhu, X. Li, X. Wang, J. Chu, S. Xiong, Ionics 2019, 25, 181.
- 47Y. Tan, Y. Zhang, X. Wang, L. Zeng, F. Luo, A. Liu, J. Electroanal. Chem. 2020, 856, 113739.
- 48H. Forootan Fard, M. Khodaverdi, F. Pourfayaz, M. H. Ahmadi, Int. J. Hydrogen Energy 2020, 45, 25307.
- 49L. Liang, M. Xiao, J. Zhu, J. Ge, C. Liu, W. Xing, J. Energy Chem. 2019, 28, 118.
- 50R. Yan, X. Sun, X. Zhang, J. Zheng, B. Jin, Nanotechnology 2020, 31, 135703.
- 51C. Liu, L. Zhang, L. Sun, W. Wang, Z. Chen, Int. J. Hydrogen Energy 2020, 45, 8558.
- 52E. M. Halim, M. Elbasri, H. Perrot, O. Sel, K. Lafdi, M. El Rhazi, Int. J. Hydrogen Energy 2019, 44, 24534.
- 53M. Abbas, R. M. Abdel Hameed, A. M. Al-Enizi, B. M. Thamer, A. Yousef, M. H. El-Newehy, Int. J. Hydrogen Energy 2021, 46, 6494.
- 54A. Elangovan, J. Xu, A. Sekar, B. Liu, J. Li, ChemCatChem 2020, 12, 6000.
- 55Z. Li, X. Cui, X. Zhang, Q. Wang, Y. Shao, Y. Lin, J. Nanosci. Nanotechnol. 2009, 9, 2316.
- 56I.-S. Park, K.-W. Park, J.-H. Choi, C. R. Park, Y.-E. Sung, Carbon 2007, 45, 28.
- 57D. Sebastián, I. Suelves, E. Pastor, R. Moliner, M. J. Lázaro, Appl. Catal. B- Environ. 2013, 132–133, 13.
- 58A. M. Al-Enizi, A. A. Elzatahry, A. M. Abdullah, A. Vinu, H. Iwai, S. S. Al-Deyab, Appl. Surf. Sci. 2017, 401, 306.
- 59L. Calvillo, M. Gangeri, S. Perathoner, G. Centi, R. Moliner, M. J. Lázaro, J. Power Sources 2009, 192, 144.
- 60W. Yuan, X. Zhang, C. Hou, Y. Zhang, H. Wang, X. Liu, J. Power Sources 2020, 451, 227800.
- 61M. B. Askari, P. Salarizadeh, A. Di Bartolomeo, M. H. Ramezan zadeh, H. Beitollahi, S. Tajik, Ceram. Int. 2021, 47, 16079.
- 62P. Pattanayak, N. Pramanik, P. Kumar, P. P. Kundu, Int. J. Hydrogen Energy 2018, 43, 11505.
- 63A. Farzaneh, E. K. Goharshadi, H. Gharibi, N. Saghatoleslami, H. Ahmadzadeh, Electrochim. Acta 2019, 306, 220.
- 64Y. Yang, Y. F. Guo, C. Fu, R. H. Zhang, W. Zhan, P. Wang, X. Zhang, Q. Wang, X. W. Zhou, J. Colloid Interface Sci. 2021, 595, 107.
- 65N. Ye, Z. Jiang, T. Fang, Electrochim. Acta 2020, 352, 136473.
- 66H. Burhan, H. Ay, E. Kuyuldar, F. Sen, Sci. Rep. 2020, 10, 6114.
- 67S. Sharma, A. Ganguly, P. Papakonstantinou, X. Miao, M. Li, J. L. Hutchison, M. Delichatsios, S. Ukleja, J. Phys. Chem. C 2010, 114, 19549.
- 68C. Shi, X. Maimaitiyiming, J. Alloys Compd. 2021, 867, 158732.
- 69R. Liu, H. Zhou, J. Liu, Y. Yao, Z. Huang, C. Fu, Y. Kuang, Electrochem. Commun. 2013, 26, 63.
- 70C. Zhang, R. Zhang, X. Li, W. Chen, ACS Appl. Mater. Interfaces 2017, 9, 29623.
- 71N. Dimitrova, M. Dhifallah, T. Mineva, T. Boiadjieva-Scherzer, H. Guesmi, J. Georgieva, RSC Adv. 2019, 9, 2073.
- 72W. Li, H. Lu, N. Zhang, M. Ma, ACS Appl. Mater. Interfaces 2017, 9, 20142.
- 73X. Jia, W. Gu, S. Zhang, E. Wang, ChemElectroChem 2017, 4, 2005.
- 74R. Shi, Y. Zhang, Z. Wang, J. Alloys Compd. 2019, 810, 151879.
- 75M. S. Al-Sharif, P. Arunachalam, T. Abiti, M. S. Amer, M. Al-Shalwi, M. A. Ghanem, Arabian J. Chem. 2020, 13, 2873.
- 76L.-Q. Huo, L.-L. Gao, J.-F. Gao, F.-Q. An, X.-Y. Niu, T.-P. Hu, Inorg. Chem. Commun. 2018, 89, 83.
- 77I.-T. Kim, M. Choi, H.-K. Lee, J. Shim, J. Ind. Eng. Chem. 2013, 19, 813.
- 78N. A. Karim, S. K. Kamarudin, J. Electroanal. Chem. 2017, 803, 19.
- 79Y.-Y. Feng, G.-H. Song, Q. Zhang, J.-N. Lv, X.-Y. Hu, Y.-L. He, X. Shen, Int. J. Hydrogen Energy 2019, 44, 3744.
- 80V. Baglio, R. S. Amin, K. M. El-Khatib, S. Siracusano, C. D'Urso, A. S. Arico, Phys. Chem. Chem. Phys. 2014, 16, 10414.
- 81Y. Wang, Int. J. Electrochem. Sci. 2017, 12, 2194.
- 82S. Buller, J. Strunk, J. Energy Chem. 2016, 25, 171.
- 83Y. Liu, K. N. Dinh, Z. Dai, Q. Yan, ACS Mater. Lett. 2020, 2, 1148.
- 84R. M. Abdel Hameed, Appl. Surf. Sci. 2017, 411, 91.
- 85L. A. Calzada, S. E. Collins, C. W. Han, V. Ortalan, R. Zanella, Appl. Catal. B- Environ. 2017, 207, 79.
- 86M. A. Alpuche-Aviles, S. Gutierrez-Portocarrero, K. K. Barakoti, Curr. Opin. Electrochem. 2019, 13, 174.
- 87C.-S. Chen, F.-M. Pan, Appl. Catal. B- Environ. 2009, 91, 663.
- 88Y. Zheng, F. Chen, X. Liu, X. Guo, Y. Ying, Y. Wu, Y. Wen, H. Yang, J. Power Sources 2020, 472, 228517.
- 89T. Maiyalagan, B. Viswanathan, U. V. Varadaraju, J. Nanosci. Nanotechnol. 2006, 6, 2067.
- 90T. Unmussig, J. Melke, A. Fischer, Phys. Chem. Chem. Phys. 2019, 21, 13555.
- 91Q. Fu, M. Gan, L. Ma, S. Wei, T. Wu, Y. Yang, T. Li, W. Zhan, F. Xie, X. Zhong, New J. Chem. 2021, 45, 5872.
- 92X. Yue, Y. Pu, W. Zhang, T. Zhang, W. Gao, J. Energy Chem. 2020, 49, 275.
- 93B. Y. Xia, H. B. Wu, J. S. Chen, Z. Wang, X. Wang, X. W. Lou, Phys. Chem. Chem. Phys. 2012, 14, 473.
- 94J. C. M. Silva, R. F. B. De Souza, G. S. Buzzo, E. V. Spinacé, A. O. Neto, M. H. M. T. Assumpção, Ionics 2014, 20, 1137.
- 95M. Xu, F. Wang, X. Liang, M. A. Shehzad, L. Wu, T. Xu, Electrochim. Acta 2021, 388, 138562.
- 96S. Wang, S. P. Jiang, X. Wang, Electrochim. Acta 2011, 56, 3338.
- 97Y.-W. Zhou, Y.-F. Chen, K. Jiang, Z. Liu, Z.-J. Mao, W.-Y. Zhang, W.-F. Lin, W.-B. Cai, Appl. Catal. B-Environ. 2021, 280, 119393.
- 98W. Jiang, Y. Pang, L. Gu, Y. Yao, Q. Su, W. Ji, C.-T. Au, J. Catal. 2017, 349, 183.
- 99Z. Merati, J. Basiri Parsa, Appl. Surf. Sci. 2018, 435, 535.
- 100X. Li, J. Wei, Y. Chai, S. Zhang, J. Colloid Interface Sci. 2015, 450, 74.
- 101X. Cui, Y. Zhu, Z. Hua, J. Feng, Z. Liu, L. Chen, J. Shi, Energy Environ. Sci. 2015, 8, 1261.
- 102Y. Yu, S. You, J. Du, Z. Xing, Y. Dai, H. Chen, Z. Cai, N. Ren, J. Zou, Appl. Catal. B- Environ. 2019, 259, 118043.
- 103R. P. R. Anjos, A. O. Santos, R. M. Antoniassi, O. C. Alves, E. A. Ponzio, J. C. M. Silva, ACS Appl. Energy Mater. 2021, 4, 6253.
- 104R. Sha, S. Badhulika, J. Electroanal. Chem. 2018, 820, 9.
- 105Y. Zheng, Z. Zhang, X. Zhang, H. Ni, Y. Sun, Y. Lou, X. Li, Y. Lu, Mater. Lett. 2018, 221, 301.
- 106D. V. Dao, G. Adilbish, T. D. Le, T. T. D. Nguyen, I.-H. Lee, Y.-T. Yu, J. Catal. 2019, 377, 589.
- 107M.-S. Ekrami-Kakhki, S. Pouyamanesh, S. Abbasi, G. Heidari, H. Beitollahi, J. Cluster Sci. 2020, 32, 363.
- 108G. Chen, Z. Dai, L. Sun, L. Zhang, S. Liu, H. Bao, J. Bi, S. Yang, F. Ma, J. Mater. Chem. A 2019, 7, 6562.
- 109Y.-Y. Feng, H.-S. Hu, G.-H. Song, S. Si, R.-J. Liu, D.-N. Peng, D.-S. Kong, J. Alloys Compd. 2019, 798, 706.
- 110Y. Kozu, S. Kawashima, F. Kitamura, J. Solid State Electrochem. 2012, 17, 761.
- 111Y. Chu, N. Zhang, J. Yang, H. Wang, Z. Dai, L. Wang, J. Gao, X. Tan, J. Mater. Sci. 2017, 53, 2087.
- 112W. Chen, J. Xue, Y. Bao, L. Feng, Chem. Eng. J. 2020, 381, 122752.
- 113X. Wang, J. Wu, J. Wang, H. Xiao, B. Chen, R. Peng, M. Fu, L. Chen, D. Ye, W. Wen, Chem. Eng. J. 2019, 369, 233.
- 114W. Li, Q. Wang, L. Wang, X.-Z. Fu, J.-L. Luo, J. Rare Earths 2021, 39, 674.
- 115X. Yu, L. Kuai, B. Geng, Nanoscale 2012, 4, 5738.
- 116S. Dai, J. Zhang, Y. Fu, W. Li, New J. Chem. 2018, 42, 18159.
- 117Z. Zhang, J. Liu, J. Gu, L. Su, L. Cheng, Energy Environ. Sci. 2014, 7, 2535.
- 118H. Gao, C. Zhai, H. Zhang, N. Fu, Y. Du, M. Zhu, Energy Technol. 2019, 7, 1900253.
- 119R. Ganesan, J. S. Lee, J. Power Sources 2006, 157, 217.
- 120Z.-G. Zhao, Z.-J. Yao, J. Zhang, R. Zhu, Y. Jin, Q.-W. Li, J. Mater. Chem. 2012, 22, 16514.
- 121W. Liu, X. Qin, X. Zhang, Z. Shao, B. Yi, J. Appl. Electrochem. 2016, 46, 887.
- 122Z. Li, S. Xu, Y. Shi, X. Zou, H. Wu, S. Lin, Chem. Eng. J. 2021, 414, 128814.
- 123W. Wu, X. D. Xiang, Y. L. Lin, W. S. Li, Int. J. Hydrogen Energy 2013, 38, 11080.
- 124M.-Q. Shi, G.-H. Song, P.-P. Yang, Y.-Q. Chu, C.-A. Ma, Mater. Lett. 2015, 153, 124.
- 125J. Rajeswari, B. Viswanathan, T. K. Varadarajan, Mater. Chem. Phys. 2007, 106, 168.
- 126F. Shafia Hoor, M. F. Ahmed, S. M. Mayanna, J. Solid State Electrochem. 2004, 8, 572.
- 127Y. Gu, Int. J. Electrochem. Sci. 2020, 15, 2481.
- 128L. S. Oh, J. Y. Kim, H. W. Kim, J. Han, E. Lim, W. B. Kim, J. H. Park, H. J. Kim, Chem. Commun. 2021, 57, 11165.
- 129Z. Cui, L. Feng, C. Liu, W. Xing, J. Power Sources 2011, 196, 2621.
- 130J. Zeng, C. Francia, C. Gerbaldi, V. Baglio, S. Specchia, A. S. Aricò, P. Spinelli, Electrochim. Acta 2013, 94, 80.
- 131E. J. McLeod, V. I. Birss, Electrochim. Acta 2005, 51, 684.
- 132V. Baglio, D. Sebastián, C. D'Urso, A. Stassi, R. S. Amin, K. M. El-Khatib, A. S. Aricò, Electrochim. Acta 2014, 128, 304.
- 133F. Yang, B. Zhang, S. Dong, Y. Tang, L. Hou, Z. Chen, Z. Li, W. Yang, C. Xu, M. Wang, Y. Li, Y. Li, Appl. Surf. Sci. 2018, 452, 11.
- 134X.-L. Sui, C.-Z. Li, L. Zhao, Z.-B. Wang, D.-M. Gu, G.-S. Huang, Int. J. Hydrogen Energy 2018, 43, 5153.
- 135X. Chen, W. Li, Z. Pan, Y. Xu, G. Liu, G. Hu, S. Wu, J. Li, C. Chen, Y. Lin, Appl. Surf. Sci. 2018, 440, 193.
- 136J. Zhang, H. Hu, X. Liu, D. S. Li, Mater. Today Chem. 2019, 11, 42.
- 137Y.-H. Mao, C.-Y. Chen, J.-X. Fu, T.-Y. Lai, F.-H. Lu, Y.-C. Tsai, Surf. Coat. Technol. 2018, 350, 949.
- 138Y. Noh, Y. Kim, H. Han, S. Park, W. Yoon, S. Lee, J. G. Kim, Y. Kim, H. J. Kim, W. B. Kim, Energy Technol. 2020, 8, 2000184.
- 139F. Yu, Y. Xie, H. Tang, N. Yang, X. Meng, X. Wang, X. L. Tian, X. Yang, Electrochim. Acta 2018, 264, 216.
- 140M. M. Ottakam Thotiyl, T. Ravikumar, S. Sampath, J. Mater. Chem. 2010, 20, 10643.
- 141F. Liu, Z. Wu, D. Dang, G. Wang, X. Tian, X. Yang, Electrochim. Acta 2019, 295, 50.
- 142F. Liu, D. Dang, X. Tian, Int. J. Hydrogen Energy 2019, 44, 8415.
- 143D. C. Higgins, J.-Y. Choi, J. Wu, A. Lopez, Z. Chen, J. Mater. Chem. 2012, 22, 3727.
- 144H. V. Patten, E. Ventosa, A. Colina, V. Ruiz, J. López-Palacios, A. J. Wain, S. C. S. Lai, J. V. Macpherson, P. R. Unwin, J. Solid State Electrochem. 2011, 15, 2331.
- 145Ö. Karatepe, Y. Yıldız, H. Pamuk, S. Eris, Z. Dasdelen, F. Sen, RSC Adv. 2016, 6, 50851
- 146S. Bi, C. Lu, W. Zhang, F. Qiu, F. Zhang, J. Energy Chem. 2018, 27, 99.
- 147W. Li, F. Gao, X. Wang, N. Zhang, M. Ma, Angew. Chem. Int. Ed. 2016, 55, 9196.
- 148S. Sheikhi, F. Jalali, Fuel 2021, 296, 120677.
- 149S. Das, K. Dutta, P. P. Kundu, S. K. Bhattacharya, Fuel Cells 2018, 18, 369.
- 150S. L. Madaswamy, A. A. Alothman, M. M. Al-Anazy, A. A. Ifseisi, K. N. Alqahtani, S. K. Natarajan, S. Angaiah, D. Ragupathy, J. Ind. Eng. Chem. 2021, 97, 79.
- 151K. Kim, H. Ahn, M. J. Park, ACS Appl. Mater. Interfaces 2017, 9, 30278.
- 152C. Zhai, S. Li, J. Wang, Y. Liu, RSC Adv. 2018, 8, 36353.
- 153R. Arukula, M. Vinothkannan, A. R. Kim, D. J. Yoo, J. Alloys Compd. 2019, 771, 477.
- 154X. Zhang, J. Ma, R. Yan, W. Cheng, J. Zheng, B. Jin, J. Alloys Compd. 2021, 867, 159017.
- 155S. S. Li, H. P. Cong, P. Wang, S. H. Yu, Nanoscale 2014, 6, 7534.
- 156X. T. Li, H. Lei, C. Yang, Q. B. Zhang, J. Power Sources 2018, 396, 64.
- 157H. Lei, X. Li, C. Sun, J. Zeng, S. S. Siwal, Q. Zhang, Small 2019, 15, 1804722.
- 158M. S. Khalifeh-Soltani, E. Shams, E. Sharifi, Int. J. Hydrogen Energy 2020, 45, 849.
- 159J. Wang, H.-B. Sun, S. A. Shah, C. Liu, G.-Y. Zhang, Z. Li, Q.-F. Zhang, M. Han, Int. J. Hydrogen Energy 2020, 45, 11089.
- 160D. K. Hassan, Int. J. Electrochem. Sci. 2016, 11, 8374.
- 161A. Gopalakrishnan, L. Durai, J. Ma, C. Y. Kong, S. Badhulika, Energy Fuels 2021, 35, 10169.
- 162A. Roy, H. S. Jadhav, M. Cho, J. G. Seo, J. Ind. Eng. Chem. 2019, 76, 515.
- 163G. Yuan, L. Wang, X. Zhang, Q. Wang, J. Colloid Interface Sci. 2019, 536, 189.
- 164J. B. Wu, Z. G. Li, X. H. Huang, Y. Lin, J. Power Sources 2013, 224, 1.
- 165Y. Huang, D. D. Babu, M. Wu, Y. Wang, ChemCatChem 2018, 10, 4497.
- 166L. N. T. Mai, L. G. Bach, Q. B. Bui, H. T. Nhac-Vu, Synth. Met. 2020, 263, 116355.
- 167L. Qian, S. Luo, L. Wu, X. Hu, W. Chen, X. Wang, Appl. Surf. Sci. 2020, 503, 144306.
- 168J. Cheng, Y. Song, M. Sun, J. Sun, L. Zhang, Energy Technology 2021, 9, 2100112.
- 169M. Jin, Y. Liu, Y. Li, Y. Chang, D. Fu, H. Zhao, G. Han, J. Appl. Polym. Sci. 2011, 122, 3415.
- 170L. Zhang, B. Liu, N. Zhang, M. Ma, Nano Res. 2017, 11, 323.
- 171Q. Tang, J. Wu, Z. Tang, Y. Li, J. Lin, M. Huang, J. Mater. Chem 2011, 21, 13354.
- 172X. Y. Jia, J. W. Zhao, L. R. Qin, C. F. Yang, J. Nano Res. 2015, 33, 150.
- 173F. Chen, N. Wu, M. Zhai, X. Zhang, R. Guo, T. Hu, M. Ma, J. Energy Chem. 2021, 58, 247.
- 174C.-Y. Chu, J.-T. Tsai, C.-L. Sun, Int. J. Hydrogen Energy 2012, 37, 13880.
- 175C. Li, P. Tang, H. Gao, G. Cao, H. Wen, P. Wang, Adv. Mater. Interfaces 2020, 7, 1901875.
- 176M. Sawangphruk, A. Krittayavathananon, N. Chinwipas, P. Srimuk, T. Vatanatham, S. Limtrakul, J. S. Foord, Fuel Cells 2013, 5, 881
- 177J. Zhang, X.-B. Yi, S. Liu, H.-L. Fan, W. Ju, Q.-C. Wang, J. Ma, J. Phys. Chem. Solids 2017, 102, 99.
- 178W. Zhang, L. Zhang, G. Zhang, P. Xiao, Y. Huang, M. Qiang, T. Chen, New J. Chem. 2019, 43, 6063.
- 179J. F. Drillet, H. Bueb, U. Dettlaff-Weglikowska, R. Dittmeyer, S. Roth, J. Power Sources 2010, 195, 8084.
- 180X. Cheng, K. Ye, D. Zhang, K. Cheng, Y. Li, B. Wang, G. Wang, D. Cao, J. Solid State Electrochem. 2015, 19, 3027.
- 181Q. Zhang, F. Yue, L. Xu, C. Yao, R. D. Priestley, S. Hou, Appl. Catal. B- Environ. 2019, 257, 117886.
- 182J. Zheng, D. A. Cullen, R. V. Forest, J. A. Wittkopf, Z. Zhuang, W. Sheng, J. G. Chen, Y. Yan, ACS Catal. 2015, 5, 1468.
- 183M. Lei, J. Wang, J. R. Li, Y. G. Wang, H. L. Tang, W. J. Wang, Sci. Rep. 2014, 4, 6013.
- 184X. Zhu, Z. Hu, M. Huang, Y. Zhao, J. Qu, S. Hu, Chin. Chem. Lett. 2021, 32, 2033.
- 185J. Sun, Y. Li, Y. Liu, W. Zhou, X. Zhen, M.-F. Lang, Int. J. Hydrogen Energy 2019, 44, 5990.
- 186J. Han, L. Yang, L. Yang, W. Jiang, X. Luo, S. Luo, Int. J. Hydrogen Energy 2018, 43, 7338.
- 187X. Zhang, Y. Sun, Q. Liu, J. Guo, X. Zhang, J. Appl. Electrochem. 2017, 48, 95.
- 188Y. Sun, H. Zheng, C. Wang, M. Yang, A. Zhou, H. Duan, Nanoscale 2016, 8, 1523.