Advanced Research Progress on High-Efficient Utilization of Pt Electrocatalysts in Fuel Cells
Gengyu Xing
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorCorresponding Author
Lei Wang
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorCorresponding Author
Honggang Fu
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorGengyu Xing
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorCorresponding Author
Lei Wang
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorCorresponding Author
Honggang Fu
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorAbstract
Fuel cells, including hydrogen–oxygen fuel cells, methanol fuel cells, formic acid fuel cells, etc., as a kind of very promising energy device, have attracted global attention due to their high energy conversion efficiency and environmentally friendly emissions. However, fuel cells are still facing the challenges of poor performance, high cost, and limited durability. Understanding the basic principles of electrocatalytic reactions provides new insights into the selection and design of fuel cell electrocatalysts with excellent performance and durability. Herein, the latest progress of Pt-based precious metal catalysts in fuel cells is focused upon, including reasonable structural design and electrochemical reaction mechanism, and the current status of efficient utilization of Pt-based catalysts with different structures is reviewed, such as nanowires, hollow structures, nanosheets, high-index nanocrystals, atomic-scale dispersion, alloy structures, and carrier effects. Finally, the personal perspectives on the future directions for efficient utilization of Pt in fuel cells are proposed.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1V. Stamenković, T. J. Schmidt, P. N. Ross, N. M. Marković, J. Phys. Chem. B 2002, 106, 11970.
- 2M. Li, Z. Zhao, T. Cheng, A. Fortunelli, C. Y. Chen, R. Yu, Q. Zhang, L. Gu, B. V. Merinov, Z. Lin, E. Zhu, T. Yu, Q. Jia, J. Guo, L. Zhang, W. A. Goddard, Y. Huang, X. Duan, Science 2016, 354, 1414.
- 3X. F. Ren, Y. Wang, A. Liu, Z. H. Zhang, Q. Y. Lv, B. H. Liu, J. Mater. Chem. A. 2020, 8, 24284.
- 4B. Jean, G. Achtelik, California Energy Commission, Zero-Emission Vehicle and Infrastructure Office, California Environmental Protection Agency, Air Resources Board, Joint Agency Staff Report on Assembly Bill 8: 2018 Annual Assessment of Time and Cost Needed to Attain 100 Hydrogen Refueling Stations in California[R], California Energy Commission, Sacramento 2018.
- 5J. Y. Du, M. G. Ouyang, J. F. Chen, Energy 2017, 120, 584.
- 6Q. Wu,T. Zhang, Automotive Digest (Chinese). 2020, 4, 18.
- 7Hydrogen refuelling stations worldwide [EB/OL]. H2 stations, https://www.netinform.net/h2/H2Stations/Default.aspx (accessed: March 2019).
- 8Z. Y. Zhou, N. Tian, J. T. Li, I. Broadwell, S. G. Sun, Chem. Soc. Rev. 2011, 40, 4167.
- 9N. Tian, J. Xiao, Z. Y. Zhou, H. X. Liu, Y. J. Deng, L. Huang, B. B. Xu, S. G. Sun, Faraday Discuss. 2013, 162, 77.
- 10W. C. Sheng, M. Myint, J. G. Chen, Y. S. Yan, Energy Environ. Sci. 2013, 6, 1509.
- 11W. C. Sheng, Z. B. Zhuang, M. R. Gao, J. Zheng, J. G. Chen, Y. S. Yan, Nat. Commun. 2015, 6, 5848.
- 12G. A. Camara, T. Iwasita, J. Electroanal. Chem. 2005, 578, 315.
- 13C. Lamy, J. M. Léger, S. Srinivasan, Modern Aspects of Electrochemistry 2002, 34, 53.
- 14H. Wang, Z. Jusys, R. J. Behm, J. Phys. Chem. B 2004, 108, 19413.
- 15Y. X. Chen, M. Heinen, Z. Jusys, R. J. Bechm, Angew. Chem., Int. Ed. 2006, 45, 981.
- 16V. Tripković, E. Skúlason, S. Siahrostami, J. K. Nørskov, J. Rossmeisl, Electrochim. Acta 2010, 55, 7975.
- 17M. S. Wilson, S. Gottesfeld, J. Appl. Electrochem. 1992, 22, 1.
- 18M. S. Saha, A. F. Gullá, R. J. Allen, S. Mukerjee, Electrochimi. Acta 2006, 51, 4680.
- 19N. Tian, B. A. Lu, X. D. Yang, R. Huang, Y. X. Jiang, Z. Y. Zhou, S. G. Sun, Electro. Energy Rev. 2018, 1, 54.
- 20O. Gröger, H. A. Gasteiger, J. P. Suchsland, J. Electrochem. Soc. 2015, 162, A2605.
- 21Y. Bing, H. Liu, L. Zhang, D. Ghosh, J. Zhang, Chem. Soc. Rev. 2010, 39, 2184.
- 22N. Tian, Z. Y. Zhou, S. G. Sun, J. Phys. Chem. C 2008, 112, 19801.
- 23N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, Z. L. Wang, Science 2007, 316, 732.
- 24M. Ruge, J. Drnec, B. Rahn, F. Reikowski, D. A. Harrington, F. Carlà, R. Felici, J. Stettner, O. M. Magnussen, J. Am. Chem. Soc. 2017, 139, 4532.
- 25Y. Li, Y. Jiang, M. Chen, H. Liao, R. Huang, Z. Zhou, N. Tian, S. Chen, S. Sun, Chem. Commun. 2012, 48, 9531.
- 26X. Huang, Z. Zhao, J. Fan, Y. Tan, N. Zheng, J. Am. Chem. Soc. 2011, 133, 4718.
- 27R. F. Service, Science 2007, 315, 172.
- 28N. Markovic, Surf. Sci. Rep. 2002, 45, 117.
- 29X. Wang, L. Figueroa-Cosme, X. Yang, M. Luo, J. Liu, Z. Xie, Y. Xia, Nano Lett. 2016, 16, 1467.
- 30D. S. He, D. He, J. Wang, Y. Lin, P. Yin, X. Hong, Y. Wu, Y. Li, J. Am. Chem. Soc. 2016, 138, 1494.
- 31X. Xu, X. Zhang, H. Sun, Y. Yang, X. Dai, J. Gao, X. Li, P. Zhang, H. H. Wang, N. F. Yu, S. G. Sun, Angew. Chem., Int. Ed. 2014, 53, 12522.
- 32J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 2004, 108, 17886.
- 33C. L. Green, A. Kucernak, J. Phys. Chem. B 2002, 106, 1036.
- 34Q. S. Chen, Z. Y. Zhou, F. J. Vidal-Iglesias, J. Solla-Gullón, J. M. Feliu, S. G. Sun, J. Am. Chem. Soc. 2011, 133, 12930.
- 35F. Y. Zhang, T. Sheng, N. Tian, L. Liu, C. Xiao, B. A. Lu, B. B. Xu, Z. Y. Zhou, S. G. Sun, Chem. Commun. 2017, 53, 8085.
- 36Y. Zhong, C. L. Xu, L. B. Kong, H. L. Li, Appl. Surf. Sci. 2008, 255, 3388.
- 37H. W. Liang, X. Cao, F. Zhou, C. H. Cui, W. J. Zhang, S. H. Yu, Adv. Mater. 2011, 23, 1467.
- 38L. Bu, J. Ding, S. Guo, X. Zhang, D. Su, X. Zhu, J. Yao, J. Guo, G. Lu, X. Huang, Adv. Mater. 2015, 27, 7204.
- 39L. Bu, S. Guo, X. Zhang, X. Shen, D. Su, G. Lu, X. Zhu, J. Yao, J. Guo, X. Huang, Nat. Commun. 2016, 7 11850.
- 40X. Huang, E. Zhu, Y. Chen, Y. Li, C. Y. Chiu, Y. Xu, Z. Lin, X. Duan, Y. Huang, Adv. Mater. 2013, 25, 2974.
- 41L. Zhang, L. T. Roling, X. Wang, M. Vara, M. Chi, J. Liu, S. I. Choi, J. Park, J. A. Herron, Z. Xie, M. Mavrikakis, Y. Xia, Science 2015, 349, 412.
- 42J. X. Wang, C. Ma, Y. Choi, D. Su, Y. Zhu, P. Liu, R. Si, M. B. Vukmirovic, Y. Zhang, R. R. Adzic, J. Am. Chem. Soc. 2011, 133, 13551.
- 43A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
- 44J. Lai, F. Lin, Y. Tang, P. Zhou, Y. Chao, Y. Zhang, S. Guo, Adv. Energy Mater. 2019, 9, 1800684.
- 45W. Wang, Y. Zhao, Y. Ding, Nanoscale 2015, 7, 11934.
- 46C. L. Lee, H. P. Chiou, C. M. Syu, C. R. Liu, C. C. Yang, C. C. Syu, Int. J. Hydrogen Energy 2011, 36, 12706-.
- 47Z. Zhang, K. L. More, K. Sun, Z. Wu, W. Li, Chem. Mater. 2011, 23, 1570.
- 48L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J. Y. Ma, D. Su, X. Huang, Science 2016, 354, 1410.
- 49S. Xue, W. Deng, F. Yang, J. Yang, I. S. Amiinu, D. He, H. Tang, S. Mu, ACS Catal. 2018, 8, 7578.
- 50M. Shen, M. Xie, J. Slack, K. Waldrop, Z. Chen, Z. Lyu, S. Cao, M. Zhao, M. Chi, P. N. Pintauro, R. Cao, Y. Xia, Nanoscale 2020, 12, 11718.
- 51J. Wu, L. Qi, H. You, A. Gross, J. Li, J. Am. Chem. Soc. 2012, 134, 11880.
- 52B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634.
- 53X. Zhang, J. Guo, P. Guan, C. Liu, H. Huang, F. Xue, X. Dong, S. J. Pennycook, M. F. Chisholm, Nat. Commun. 2013, 4, 1924.
- 54P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Angew. Chem., Int. Ed. 2016, 55, 10800.
- 55Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang, Y. Li, Angew. Chem., Int. Ed. 2017, 56, 6937.
- 56Y. T. Kim, K. Ohshima, K. Higashimine, T. Uruga, M. Takata, H. Suematsu, T. Mitani, Angew. Chem., Int. Ed. 2006, 45, 407.
- 57K. Yamamoto, T. Imaoka, W. J. Chun, O. Enoki, H. Katoh, M. Takenaga, A. Sonoi, Nat. Chem. 2009, 1, 397.
- 58S. Back, A. R. Kulkarni, S. Siahrostami, ChemCatChem. 2018, 10, 3034.
- 59Y. Deng, B. Chi, X. Tian, Z. Cui, E. Liu, Q. Jia, W. Fan, G. Wang, D. Dang, M. Li, K. Zang, J. Luo, Y. Hu, S. Liao, X. Sun, S. Mukerjee, J. Mater. Chem. A. 2019, 7, 5020.
- 60J. Li, S. Chen, N. Yang, M. Deng, S. Ibraheem, J. Deng, J. Li, L. Li, Z. Wei, Angew. Chem., Int. Ed. 2019, 58, 7035.
- 61Y. Lykhach, A. Bruix, S. Fabris, V. Potin, I. Matolínová, V. Matolín, J. Libuda, K. M. Neyman, Catal. Sci. Technol. 2017, 7, 4315.
- 62Q. Peng, J. Zhou, J. Chen, T. Zhang, Z. Sun, J. Mater. Chem. A. 2019, 7, 26062.
- 63C. Wan, X. Duan, Y. Huang, Adv. Energy Mater. 2020, 10, 1903815.
- 64F. Xiao, G. L. Xu, C. J. Sun, M. Xu, W. Wen, Q. Wang, M. Gu, S. Zhu, Y. Li, Z. Wei, X. Pan, J. Wang, K. Amine, M. Shao, Nano Energy. 2019, 61, 60.
- 65G. Zhang, Y. Jia, C. Zhang, X. Xiong, K. Sun, R. Chen, W. Chen, Y. Kuang, L. Zheng, H. Tang, W. Liu, J. Liu, X. Sun, W. F. Lin, H. Dai, Energy Environ. Sci. 2019, 12, 1317.
- 66Z. Zhang, J. Sun, F. Wang, L. Dai, Angew. Chem., Int. Ed. 2018, 57, 9038.
- 67Z. Qiao, S. Hwang, X. Li, C. Wang, W. Samarakoon, S. Karakalos, D. Li, M. Chen, Y. He, M. Wang, Z. Liu, G. Wang, H. Zhou, Z. Feng, D. Su, J. S. Spendelow, G. Wu, Energy Environ. Sci. 2019, 12, 2830.
- 68S. K. Kaiser, E. Fako, G. Manzocchi, F. Krumeich, R. Hauert, A. H. Clark, O. V. Clark, N. López, J. P. Ramírez, Nat. Catal. 2020, 3, 376.
- 69R. E. Benfield, J. Chem. Soc. 1992, 88, 1107.
- 70Y. Lu, W. Chen, Chem. Soc. Rev. 2012, 41, 3594.
- 71J. D. Aiken, R. G. Finke, J. Mol. Catal. AChem. 1999, 145, 1.
- 72L. Tao, Y. Zhao, Y. Zhao, S. Huang, Y. Yang, Q. Tong, F. Gao, J. Phys. Chem. Solids 2018, 113, 61.
- 73X. W. Xie, J. J. Lv, L. Liu, A. J. Wang, J. J. Feng, Q. Q. Xu, Int. J. Hydrogen Energy 2017, 42, 2104.
- 74A. von Weber, S. L. Anderson, Acc. Chem. Res. 2016, 49, 2632.
- 75A. von Weber, E. T. Baxter, S. Proch, M. D. Kane, M. Rosenfelder, H. S. White, S. L. Anderson, Phys. Chem. Chem. Phys. 2015, 17, 17601.
- 76W. Liu, H. Wang, Surf. Sci. 2016, 648, 120.
- 77L. Liu, A. Corma, Chem. Rev. 2018, 118, 4981.
- 78R. Lang, T. Li, D. Matsumura, S. Miao, Y. Ren, Y. T. Cui, Y. Tan, B. Qiao, L. Li, A. Wang, X. Wang, T. Zhang, Angew. Chem., Int. Ed. 2016, 55, 16054.
- 79P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, N. Zheng, Science 2016, 352, 797.
- 80F. Chen, X. Jiang, L. Zhang, R. Lang, B. Qiao, Chinese J. Catal. 2018, 39, 893.
- 81J. Zhang, X. Wu, W. C. Cheong, W. Chen, R. Lin, J. Li, L. Zheng, W. Yan, L. Gu, C. Chen, Q. Peng, D. Wang, Y. Li, Nat. Commun. 2018, 9, 1002.
- 82S. Yang, J. Kim, Y. J. Tak, A. Soon, H. Lee, Angew. Chem., Int. Ed. 2016, 55, 2058.
- 83X. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, D. Tan, R. Si, S. Zhang, J. Li, L. Sun, Z. Tang, X. Pan, X. Bao, Science 2014, 344, 616.
- 84L. Wang, W. Zhang, S. Wang, Z. Gao, Z. Luo, X. Wang, R. Zeng, A. Li, H. Li, M. Wang, X. Zheng, J. Zhu, W. Zhang, C. Ma, R. Si, J. Zeng, Nat. Commun. 2016, 7, 14036.
- 85H. Guan, J. Lin, B. Qiao, X. Yang, L. Li, S. Miao, J. Liu, A. Wang, X. Wang, T. Zhang, Angew. Chem., Int. Ed. 2016, 55, 2820.
- 86G. Panjabi, A. M. Argo, B. C. Gates, Chem. Eur. J. 2015, 5, 2417.
- 87J. Kim, C. W. Roh, S. K. Sahoo, S. Yang, J. Bae, J. W. Han, H. Lee, Adv. Energy Mater. 2018, 8, 1701476.
- 88Y. Xiong, J. Dong, Z. Q. Huang, P. Xin, W. Chen, Y. Wang, Z. Li, Z. Jin, W. Xing, Z. Zhuang, J. Ye, X. Wei, R. Cao, L. Gu, S. Sun, L. Zhuang, X. Chen, H. Yang, C. Chen, Q. Peng, C. R. Chang, D. Wang, Y. Li, Nat. Nanotechnol. 2020, 15, 390.
- 89J. Liu, M. Jiao, L. Lu, H. M. Barkholtz, Y. Li, Y. Wang, L. Jiang, Z. Wu, D. J. Liu, L. Zhuang, C. Ma, J. Zeng, B. Zhang, D. Su, P. Song, W. Xing, W. Xu, Y. Wang, Z. Jiang, G. Sun, Nat. Commun. 2017, 8, 15938.
- 90H. Zhou, Y. F. Zhao, J. Xu, H. R. Sun, Z. J. Li, W. Liu, T. W. Yuan, W. Liu, X. Q. Wang, W. C. Cheong, Z. Y. Wang, X. Wang, C. Zhao, Y. C. Yao, W. Y. Wang, F. Y. Zhou, M. Chen, B. J. Jin, R. B. Sun, J. Liu, X. Hong, T. Yao, S. Q. Wei, J. Luo, Y. Wu, Nat. Commun. 2020, 11, 335.
- 91S. Y. Zhu, J. J. Ge, C. P. Liu, W. Xing, Energy Chem. 2019, 1, 100018.
- 92S. Sui, X. Wang, X. Zhou, Y. Su, S. Riffat, C. J. Liu, J. Mater. Chem. A 2017, 5, 1808.
- 93R. A. Silva, T. Hashimoto, G. E. Thompson, C. M. Rangel, Int. J. Hydrogen Energy 2012, 37, 7299.
- 94S. Ueda, Y. Kobayashi, S. Koizumi, Y. Tsutsumi, Microscopy 2015, 64, 87.
- 95L. L. Cao, Q. Q. Luo, J. J. Chen, L. Wang, Y. Lin, H. J. Wang, X. K. Liu, X. Y. Shen, W. Zhang, W. Liu, Z. M. Qi, Z. Jiang, J. L. Yang, T. Yao, Nat. Commun. 2019, 10, 4849.
- 96L. L. Cao, Q. Q. Luo, W. Liu, Y. Lin, X. K. Liu, Y. J. Cao, W. Zhang, Y. Wu, J. L. Yang, T. Yao, S. Q. Wei, Nat. Catal. 2019, 2, 134.
- 97L. L. Cao, Y. J. Cao, X. K. Liu, Q. Q. Luo, W. Liu, W. Zhang, X. L. Mou, T. Yao, S. Q. Wei, J. Mater. Chem. A. 2018, 6, 1568415689.
- 98M. Luo, S. Guo, Nat. Rev. Mater. 2017, 2, 17059.
- 99L. Wang, Z. Zeng, W. Gao, T. Maxson, D. Raciti, M. Giroux, X. Pan, C. Wang, J. Greeley, Science 2019, 363, 870.
- 100P. N. Duchesne, Z. Y. Li, C. P. Deming, V. Fung, X. Zhao, J. Yuan, T. Regier, A. Aldalbahi, Z. Almarhoon, S. Chen, D. E. Jiang, N. Zheng, P. Zhang, Nat. Mater. 2018, 17, 1033.
- 101S. Guo, S. Dong, E. Wang, ACS Nano 2010, 4, 547.
- 102S. Y. Ma, H. H. Li, B. C. Hu, X. Cheng, Q. Q. Fu, S. H. Yu, J. Am. Chem. Soc. 2017, 139, 5890.
- 103H. L. Liu, F. Nosheen, X. Wang, Chem. Soc. Rev. 2015, 44, 3056.
- 104M. E. Scofield, C. Koenigsmann, L. Wang, H. Liu, S. S. Wong, Energy Environ. Sci. 2015, 8, 350.
- 105J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli, Y. Shao-Horn, J. Am. Chem. Soc. 2013, 135, 7985.
- 106T. Zhao, Y. Hu, M. Gong, R. Lin, S. Deng, Y. Lu, X. Liu, Y. Chen, T. Shen, Y. Hu, L. Han, H. Xin, S. Chen, D. Wang, Nano Energy 2020, 74, 104877.
- 107H. Zhang, M. Jin, Y. Xia, Angew. Chem., Int. Ed. 2012, 51, 7656.
- 108B. A. Lu, J. H. Du, T. Sheng, N. Tian, J. Xiao, L. Liu, B. B. Xu, Z. Y. Zhou, S. G. Sun, Nanoscale 2016, 8, 11559.
- 109Q. Chen, Y. Yang, Z. Cao, Q. Kuang, G. Du, Y. Jiang, Z. Xie, L. Zheng, Angew. Chem., Int. Ed. 2016, 55, 9021.
- 110Y. Jia, Y. Jiang, J. Zhang, L. Zhang, Q. Chen, Z. Xie, L. Zheng, J. Am. Chem. Soc. 2014, 136, 3748.
- 111N. Zhang, L. Bu, S. Guo, J. Guo, X. Huang, Nano Lett. 2016, 16, 5037.
- 112X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang, X. Duan, T. Mueller, Y. Huang, Science 2015, 348, 1230.
- 113L. Cao, T. Mueller, Nano Lett. 2016, 16, 7748.
- 114H. Huang, K. Li, Z. Chen, L. Luo, Y. Gu, D. Zhang, C. Ma, R. Si, J. Yang, Z. Peng, J. Zeng, J. Am. Chem. Soc. 2017, 139, 8152.
- 115V. Beermann, M. Gocyla, E. Willinger, S. Rudi, M. Heggen, R. E. Dunin-Borkowski, M. G. Willinger, P. Strasser, Nano Lett. 2016, 16, 1719.
- 116L. L. Shen, G. R. Zhang, S. Miao, J. Liu, B. Q. Xu, ACS Catal. 2016, 6, 1680.
- 117L. Zou, J. Li, T. Yuan, Y. Zhou, X. Li, H. Yang, Nanoscale 2014, 6, 10686.
- 118S. I. Choi, S. Xie, M. Shao, J. H. Odell, N. Lu, H. C. Peng, L. Protsailo, S. Guerrero, J. Park, X. Xia, J. Wang, M. J. Kim, Y. Xia, Nano Lett. 2013, 13, 3420.
- 119D. Y. Chung, S. W. Jun, G. Yoon, S. G. Kwon, D. Y. Shin, P. Seo, J. M. Yoo, H. Shin, Y. H. Chung, H. Kim, B. S. Mun, K. S. Lee, N. S. Lee, S. J. Yoo, D. H. Lim, K. Kang, Y. E. Sung, T. Hyeon, J. Am. Chem. Soc. 2015, 137, 15478.
- 120M. Karuppannan, Y. Kim, S. Gok, E. Lee, J. Y. Hwang, J. H. Jang, Y. H. Cho, T. Lim, Y. E. Sung, O. J. Kwon, Energy Environ. Sci. 2019, 12, 2820.
- 121Z. Kong, Y. Maswadeh, J. A. Vargas, S. Shan, Z. P. Wu, H. Kareem, A. C. Leff, D. T. Tran, F. Chang, S. Yan, S. Nam, X. Zhao, J. M. Lee, J. Luo, S. Shastri, G. Yu, V. Petkov, C. J. Zhong, J. Am. Chem. Soc. 2020, 142, 1287.
- 122T. Kwon, M. Jun, H. Y. Kim, A. Oh, J. Park, H. Baik, S. H. Joo, K. Lee, Adv. Funct. Mater. 2018, 28, 1706440.
- 123J. Li, H. M. Yin, X. B. Li, E. Okunishi, Y. L. Shen, J. He, Z. K. Tang, W. X. Wang, E. Yücelen, C. Li, Y. Gong, L. Gu, S. Miao, L. M. Liu, J. Luo, Y. Ding, Nat. Energy. 2017, 2, 17111.
- 124X. Wang, J. Sunarso, Q. Lu, Z. Zhou, J. Dai, D. Guan, W. Zhou, Z. Shao, Adv. Energy Mater. 2019, 10, 1903271.
- 125S. Xie, S. I. Choi, N. Lu, L. T. Roling, J. A. Herron, L. Zhang, J. Park, J. Wang, M. J. Kim, Z. Xie, M. Mavrikakis, Y. Xia, Nano Lett. 2014, 14, 3570.
- 126S. Yang, Y. J. Tak, J. Kim, A. Soon, H. Lee, ACS Catal. 2017, 7, 1301.
- 127X. Zeng, J. Shui, X. Liu, Q. Liu, Y. Li, J. Shang, L. Zheng, R. Yu, Adv. Energy Mater. 2018, 8, 1701345.
- 128X. J. Zhang, J. M. Zhang, P. Y. Zhang, Y. Li, S. Xiang, H. G. Tang, Y. Z. Fan, Mol. Catal. 2017, 436, 138.
- 129S. Y. Huang, P. Ganesan, S. Park, B. N. Popov, J. Am. Chem. Soc. 2009, 131 13898.
- 130C. V. Subban, Q. Zhou, A. Hu, T. E. Moylan, F. T. Wagner, F. J. DiSalvo, J. Am. Chem. Soc. 2010, 132, 17531.
- 131S. Zhang, H. Zhu, H. Yu, J. Hou, B. Yi, P. Ming, Chinese J. Catal. 2007, 28, 109.
- 132H. Schmies, A. Bergmann, J. Drnec, G. Wang, D. Teschner, S. Kühl, D. J. S. Sandbeck, S. Cherevko, M. Gocyla, M. Shviro, M. Heggen, V. Ramani, R. E. Dunin-Borkowski, K. J. J. Mayrhofer, P. Strasser, Adv. Energy Mater. 2018, 8, 1701663.
- 133M. Mukherjee, M. Samanta, U. K. Ghorai, S. Murmu, G. P. Das, K. K. Chattopadhyay, Appl. Surf. Sci. 2018, 449, 144.
- 134S. S. A. Shah, T. Najam, C. Cheng, L. Peng, R. Xiang, L. Zhang, J. Deng, W. Ding, Z. Wei, Chemistry 2018, 24, 10630.
- 135X. Zhang, P. Lu, X. Cui, L. Chen, C. Zhang, M. Li, Y. Xu, J. Shi, J. Catal. 2016, 344, 455.
- 136X. Yu, S. Ye, J. Power Sources 2007, 172, 133.
- 137S. Ott, A. Orfanidi, H. Schmies, B. Anke, H. N. Nong, J. Hubner, U. Gernert, M. Gliech, M. Lerch, P. Strasser, Nat. Mater. 2020, 19, 77.
- 138J. Liu, M. Jiao, B. Mei, Y. Tong, Y. Li, M. Ruan, P. Song, G. Sun, L. Jiang, Y. Wang, Z. Jiang, L. Gu, Z. Zhou, W. Xu, Angew. Chem., Int. Ed. 2019, 58, 1163.
- 139E. Antolini, E. R. Gonzalez, Solid State Ion. 2009, 180, 746.
- 140C. Si, J. Zhang, Y. Wang, W. Ma, H. Gao, L. Lv, Z. Zhang, ACS Appl. Mater. Inter. 2017, 9, 2485.
- 141K. W. Kim, S. M. Kim, S. Choi, J. Kim, I. S. Lee, ACS Nano 2012, 6, 5122.
- 142H. Yan, C. Tian, L. Sun, B. Wang, L. Wang, J. Yin, A. Wu, H. Fu, Energy Environ. Sci. 2014, 7, 1939.
- 143H. Yan, M. Meng, L. Wang, A. Wu, C. Tian, L. Zhao, H. Fu, Nano Res. 2015, 9, 329.
- 144S. Su, Y. Shi, Y. Zhou, Y. B. Wang, F. B. Wang, X. H. Xia, Electrochem. Commun. 2019, 107, 106540.