Selection of Sodium Salt Electrolyte Compatible with Na0.67Ni0.15Fe0.2Mn0.65O2 Cathode for Sodium-Ion Batteries
Shimin Wang
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050 China
Search for more papers by this authorChunlei Li
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050 China
Search for more papers by this authorXiaoqi Fan
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050 China
Search for more papers by this authorShuxiang Wen
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050 China
Search for more papers by this authorHongli Lu
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050 China
Search for more papers by this authorHong Dong
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050 China
Search for more papers by this authorJie Wang
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050 China
Search for more papers by this authorYin Quan
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050 China
Search for more papers by this authorCorresponding Author
Shiyou Li
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050 China
Qinghai Research Center of Low-temperature Lithium-ion Battery Technology Engineering, Qinghai Green Grass New Energy Technology Co. Ltd, Xining, 810008 China
Search for more papers by this authorShimin Wang
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050 China
Search for more papers by this authorChunlei Li
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050 China
Search for more papers by this authorXiaoqi Fan
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050 China
Search for more papers by this authorShuxiang Wen
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050 China
Search for more papers by this authorHongli Lu
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050 China
Search for more papers by this authorHong Dong
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050 China
Search for more papers by this authorJie Wang
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050 China
Search for more papers by this authorYin Quan
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050 China
Search for more papers by this authorCorresponding Author
Shiyou Li
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu Province, 730050 China
Qinghai Research Center of Low-temperature Lithium-ion Battery Technology Engineering, Qinghai Green Grass New Energy Technology Co. Ltd, Xining, 810008 China
Search for more papers by this authorAbstract
The construction of an optimized electrolyte system compatible with layered transition metal (TM) oxides is of great importance to advanced sodium-ion batteries (SIBs). Herein, a low-cost iron-containing manganese-based layered cathode material of Na0.67Ni0.15Fe0.2Mn0.65O2 (N-NFM) is prepared through an improved coprecipitation method. Then, the chemical properties of interfaces between the N-NFM cathode and organic liquid electrolytes based on NaClO4 and NaPF6 are investigated, respectively. Results show that the cathode electrolyte interphase (CEI) film formed in the NaPF6-based electrolyte is dense and uniform, which inhibits the dissolution of TM ions effectively and provides a low energy barrier for the transport of Na+. Apart from that the CEI film formed in the NaClO4-based electrolyte contains more organic but less inorganic compounds, resulting in an increase in impedance. In addition, it is believed that the stability of the CEI film is susceptible to the perchlorate with strong oxidizing property. In this role, a small part of the CEI film falls from the cathode surface, accelerating the dissolution of TM ions and leading to the reactivation of electrolyte decomposition.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1P. E. Brockway, A. Owen, L. I. Brand-Correa, L. Hardt, Nat. Energy 2019, 4, 612.
- 2C. Delmas, Adv. Energy Mater. 2018, 8, 1703137.
- 3H. S. Hirsh, Y. Li, D. H. S. Tan, M. Zhang, E. Zhao, Y. S. Meng, Adv. Energy Mater. 2020, 10, 2001274.
- 4Q. Liu, Z. Hu, M. Chen, C. Zou, H. Jin, S. Wang, S. L. Chou, Y. Liu, S. X. Dou, Adv. Funct. Mater. 2020, 30, 1909530.
- 5Y. Xiao, N. M. Abbasi, Y. F. Zhu, S. Li, S. J. Tan, W. Ling, L. Peng, T. Yang, L. Wang, X. D. Guo, Y. X. Yin, H. Zhang, Y. G. Guo, Adv. Funct. Mater. 2020, 30, 2001334.
- 6M. S. Chae, H. J. Kim, H. Bu, J. Lyoo, R. Attias, B. Dlugatch, M. Oliel, Y. Gofer, S. T. Hong, D. Aurbach, Adv. Energy Mater. 2020, 10, 200564.
- 7M. Chen, Q. Liu, S. W. Wang, E. Wang, X. Guo, S. L. Chou, Adv. Energy Mater. 2019, 9, 1803609.
- 8J. Y. Hwang, S. T. Myung, Y. K. Sun, Chem. Soc. Rev. 2017, 46, 3529.
- 9T. Jin, H. Li, K. Zhu, P. F. Wang, P. Liu, L. Jiao, Chem. Soc. Rev. 2020, 49, 2342.
- 10P. F. Wang, Y. You, Y. X. Yin, Y. G. Guo, Adv. Energy Mater. 2018, 8, 1701912.
- 11N. Ortiz-Vitoriano, N. E. Drewett, E. Gonzalo, T. Rojo, Energy Environ. Sci. 2017, 10, 1051.
- 12C. Yang, S. Xin, L. Mai, Y. You, Adv. Energy Mater. 2020, 11, 2000974.
- 13C. Delmas, C. Fouassier, P. Hagenmuller, Physica B+C 2007, 99, 81.
10.1016/0378-4363(80)90214-4 Google Scholar
- 14X. G. Qi, L. Liu, N. Song, F. Gao, K. Yang, Y. Lu, H. Yang, Y. S. Hu, Z. H. Cheng, L. Chen, ACS Appl. Mater. Interfaces 2017, 9, 40215.
- 15C. Chen, Z. Ding, Z. Han, C. Liang, X. Lan, P. Wang, P. Gao, W. Wei, Phys. Chem. Lett. 2020, 11, 5464.
- 16K. Wang, H. Wan, P. Yan, X. Chen, J. Fu, Z. Liu, H. Deng, F. Gao, M. Sui, Adv. Mater. 2019, 31, 1904816.
- 17L. Mu, X. Feng, R. Kou, Y. Zhang, H. Guo, C. Tian, C. J. Sun, X. W. Du, D. Nordlund, H. L. Xin, F. Lin, Adv. Energy Mater. 2018, 8, 1801975.
- 18T. Jin, P. F. Wang, Q. C. Wang, K. Zhu, T. Deng, J. Zhang, W. Zhang, X. Q. Yang, L. Jiao, C. Wang, Angew. Chem., Int. Ed. 2020, 59, 14511.
- 19J. Y. Hwang, J. Kim, T. Y. Yu, Y. K. Sun, Adv. Energy Mater. 2019, 9, 1803364.
- 20D. J. Xiong, L. D. Ellis, J. Li, H. Li, T. Hynes, J. P. Allen, J. Xia, D. S. Hall, I. G. Hill, J. R. Dahn, Electrochem. Soc. 2017, 164, A3025.
- 21C. H. Jo, J. H. Jo, H. Yashiro, S. J. Kim, Y. K. Sun, S. T. Myung, Adv. Energy Mater. 2018, 8, 1702942.
- 22A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson, M. R. Palacín, Mater. Chem. A 2014, 3, 22.
- 23J. C. Kim, D. Kwon, J. H. Yang, H. Kim, G. Ceder, Adv. Energy Mater. 2020, 10, 2001151.
- 24T. Y. Yu, H. H. Ryu, G. Han, Y. K. Sun, Adv. Energy Mater. 2020, 10, 2001609.
- 25W. Zuo, J. Qiu, X. Liu, F. Ren, Y. Yang, Nat. Commun. 2020, 11, 3544.
- 26S. Guo, Q. Li, P. Liu, M. Chen, H. Zhou, Nat. Commun. 2017, 8, 135.
- 27X. Liu, G. Zhong, Z. Xiao, B. Zheng, Y. Yang, Nano Energy 2020, 76, 104997.
- 28J. W. Somerville, A. Sobkowiak, N. Tapia-Ruiz, J. Billaud, J. G. Lozano, R. A. House, L. C. Gallington, T. Ericsson, L. Häggström, M. R. Roberts, U. Maitra, P. G. Bruce, Energy Environ. Sci. 2019, 12, 2223.
- 29H. Jang-Yeon, Y. Tae-Yeon, S. Yang-Kook, Mater. Chem. A 2018, 6, 16854.
- 30Y. Xiao, Y. F. Zhu, H. R. Yao, P. F. Wang, X. D. Zhang, H. Li, X. Yang, L. Gu, Y. C. Li, T. Wang, Adv. Energy Mater. 2019, 9, 1803971.
- 31K. Kaliyappan, T. Or, Y. Deng, Y. Hu, Z. Chen, Adv. Funct. Mater. 2020, 30, 1910251.
- 32D. Yuan, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang, Y. Cao, Electrochim. Acta 2014, 116, 300.
- 33Y. Wang, L. Wang, H. Zhu, J. Chu, Y. Fang, L. Wu, L. Huang, Y. Ren, C. J. Sun, Q. Liu, X. Ai, H. Yang, Y. Cao, Adv. Funct. Mater. 2020, 20, 1910327.
- 34A. Konarov, H. J. Kim, J. H. Jo, N. Voronina, Y. Lee, Z. Bakenov, J. Kim, S. T. Myung, Adv. Energy Mater. 2020, 10, 2001111.
- 35J. Wang, D. Zhou, X. He, L. Zhang, X. Cao, Ning, B. Yan, X. Qi, J. Li, V. Murzin, E. Paillard, X. Liu, G. Schumacher, M. Winter, J. Li, ACS Appl. Mater. Interfaces 2020, 12, 5017.
- 36X. Bai, A. Iadecola, J. M. Tarascon, P. Rozier, Energy Storage Mater. 2020, 31, 146.
- 37P. F. Wang, Y. You, Y. X. Yin, Y. G. Guo, Adv. Energy Mater. 2018, 8, 1701912.
- 38I. Moeez, D. Susanto, G. Ali, H. G. Jung, H. D. Lim, K. Y. Chung, Mater. Chem. A 2020, 8, 13964.
- 39F. Zhang, C. Wang, D. Zhao, L. Yang, P. Wang, W. Li, B. Wang, S. Li, Electrochim. Acta 2020, 337, 135727.
- 40G. G. Eshetu, G. A. Elia, M. Armand, M. Forsyth, S. Komaba, T. Rojo, S. Passerini, Adv. Energy Mater. 2020, 10, 2000093.
- 41R. Benedek, Phys. Chem. C 2017, 121, 22049.
- 42C. Zhan, T. Wu, J. Lu, K. Amine, Energy Environ. Sci. 2018, 11, 243.
- 43J. A. Gilbert, I. A. Shkrob, D. P. Abraham, Electrochem. Soc. 2017, 164, A389.
- 44E. Talaie, V. Duffort, H. L. Smith, B. Fultz, L. F. Nazar, Energy Environ. Sci. 2015, 8, 2512.
- 45J. Zhang, D. W. Wang, W. Lv, S. Zhang, Q. Liang, D. Zheng, F. Kang, Q. H. Yang, Energy Environ. Sci. 2017, 10, 370.
- 46K. Li, J. Zhang, D. Lin, D. W. Wang, B. Li, W. Lv, S. Sun, Y. B. He, F. Kang, Q. H. Yang, L. Zhou, T. Y. Zhang, Nat. Commun. 2019, 10, 725.
- 47Z. W. Seh, J. Sun, Y. Sun, Y. Cui, ACS Central Sci. 2015, 1, 449.
- 48S. Choudhury, S. Wei, Y. Ozhabes, D. Gunceler, M. J. Zachman, Z. Tu, J. H. Shin, P. Nath, A. Agrawal, L. F. Kourkoutis, T. A. Arias, L. A. Archer, Nat. Commun. 2017, 8, 898.
- 49S. Zhang, M. S. Ding, K. Xu, J. Allen, T. R. Jow, Electrochem. Solid State Lett. 2001, 4, A206.
- 50M. Bakierska, M. Świętosławski, A. Chojnacka, D. Majda, R. Dziembaj, M. Molenda, Mater. Technol. 2016, 31, 614.
- 51N. Zhang, L. Ai, L. Mao, Y. Feng, Y. Xie, S. Wang, Y. Liang, X. Cui, S. Li, Electrochim. Acta 2019, 319, 822.