Self-Adhesive Polyimide (PI)@Reduced Graphene Oxide (RGO)/PI@Carbon Nanotube (CNT) Hierarchically Porous Electrodes: Maximizing the Utilization of Electroactive Materials for Organic Li-Ion Batteries
Shuwu Liu
Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022 China
Search for more papers by this authorHaoqi Yang
Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022 China
Search for more papers by this authorLing Sui
Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022 China
Search for more papers by this authorCorresponding Author
Shaohua Jiang
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 China
Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorCorresponding Author
Haoqing Hou
Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022 China
Search for more papers by this authorShuwu Liu
Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022 China
Search for more papers by this authorHaoqi Yang
Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022 China
Search for more papers by this authorLing Sui
Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022 China
Search for more papers by this authorCorresponding Author
Shaohua Jiang
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 China
Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorCorresponding Author
Haoqing Hou
Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022 China
Search for more papers by this authorAbstract
Although organic carbonyl polymers have been successfully used as electrodes for lithium-ion batteries (LIBs), the operational capacity and energy density are still restricted due to their low utilization of active materials, poor electronic conductivity, and insulated binders. In this contribution, an efficient conductive network composed of reduced graphene oxide (RGO) and carbon nanotubes (CNTs) is introduced into polyimide (PI) via in-situ polymerization. Benefitting from the intrinsic viscosity of PI precursor, the self-adhesive PI@RGO/PI@CNT electrode can be obtained through imidization and thermal treatment without any insulated binders. Structural characterization reveals that PI uniformly grows on the RGO layer and connects with CNTs to form conductive networks, implying that a small amount of carbons can greatly improve the conductivity. As expected, the PI@RGO/PI@CNT electrode delivers a high initial capacity of 1291 mAh g−1 at 0.1 A g−1, an ultrahigh-rate performance of 212 mAh g−1 at 5 A g−1, and a stable cyclability with capacity retention of 96% at 10 A g−1. Compared with reported PI-based electrodes, the PI@RGO/PI@CNTs electrode could achieve a superhigh utilization of active materials. This work proposes an effective method to improve the utilization of PI and provides a guideline on the electrode structural design and preparation process.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente202000397-sup-0001-SuppData-S1.docx25.8 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) J. M. Tarascon, M. Armand, Nature 2001, 414, 359; b) J. B. Goodenough, Y. Kim, Chem. Mater. 2010, 22, 587; c) M. Tang, H. Li, E. Wang, C. Wang, Chin. Chem. Lett. 2017, 29, 232; d) B. Scrosati, J. Garche, J. Power Sources 2010, 195, 2419; e) M. Armand, J. M. Tarascon, Nature 2008, 451, 652; f) M. Liu, N. Deng, J. Ju, L. Fan, L. Wang, Z. Li, H. Zhao, G. Yang, W. Kang, J. Yan, B. Cheng, Adv. Funct. Mater. 2019, 29, 1905467; g) C. Chen, Y. Lu, Y. Ge, J. Zhu, H. Jiang, Y. Li, Y. Hu, X. Zhang, Energy Technol. 2016, 4, 1440; h) H. Zhao, N. Deng, J. Yan, W. Kang, J. Ju, Y. Ruan, X. Wang, X. Zhuang, Q. Li, B. Cheng, Chem. Eng. J. 2018, 347, 343.
- 2a) Y. Zhao, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Adv. Energy Mater. 2016, 6, 1502175; b) L. Li, J. Zhou, C. Zhang, T. Liu, Compos. Commun. 2019, 15, 162; c) W. Wei, Z. Wang, Z. Liu, Y. Liu, L. He, D. Chen, A. Umar, L. Guo, J. Li, J. Power Sources 2013, 238, 376; d) L. Wang, F. Liu, W. Shao, S. Cui, Y. Zhao, Y. Zhou, J. He, Compos. Commun. 2019, 16, 150; e) R. Yazami, Y. F. Reynier, Electrochim. Acta 2002, 47, 1217; f) M. Yoshio, H. Wang, K. Fukuda, Angew. Chem. 2003, 42, 4203.
- 3a) Q. Cheng, Y. Zhang, J. Electrochem. Soc. 2018, 165, A1104; b) Y. S. Wu, Y. H. Wang, Y. H. Lee, J. Alloys Compd. 2006, 426, 218.
- 4a) Y. Liang, Z. Tao, J. Chen, Adv. Energy Mater. 2012, 2, 742; b) Z. Song, H. Zhou, Energy Environ. Sci. 2013, 6, 2280; c) T. Schon, B. McAllister, P.-F. Li, D. Seferos, Chem. Soc. Rev. 2016, 45, 6345; d) Q. Zhao, Y. Lu, J. Chen, Adv. Energy Mater. 2017, 7, 1601792.
- 5a) Z. Song, Y. Qian, M. L. Gordin, D. Tang, T. Xu, M. Otani, H. Zhan, H. Zhou, D. Wang, Angew. Chem. 2015, 127, 14153; b) Z. Zhu, J. Chen, J. Electrochem. Soc. 2015, 162, A2393.
- 6J. Wu, X. Rui, C. Wang, W. B. Pei, R. Lau, Q. Yan, Q. Zhang, Adv. Energy Mater. 2015, 5, 1402189.
- 7a) F. Xu, J. Xia, W. Shi, S. A. Cao, Chem. Lett. 2016, 45, 271; b) Z. Song, H. Zhan, Y. Zhou, Angew, Chem. 2010, 49, 8444; c) L. Chen, W. Li, Y. Wang, C. Wang, Y. Xia, RSC Adv. 2014, 4, 25369; d) G. Hernández, N. Casado, R. Coste, D. Shanmukaraj, L. Rubatat, M. Armand, D. Mecerreyes, RSC Adv. 2015, 5, 17096.
- 8H. Yang, S. Liu, L. Cao, J. Shaohua, H. Hou, J. Mater. Chem. A 2018, 6, 21216.
- 9a) J. Chen, K. Fang, Q. Chen, J. Xu, C. P. Wong, Nano Energy 2018, 53, 337; b) M. Chen, J. Chen, W. Zhou, J. Xu, C. P. Wong, J. Mater. Chem. A 2019, 7, 26524; c) Y. Wang, Q. Qu, S. Gao, G. Tang, K. Liu, S. He, C. Huang, Carbon 2019, 155, 706.
- 10a) S. Park, D. Dikin, S. Nguyen, R. Ruoff, J. Phys. Chem. C 2009, 113, 15801; b) S. Park, K. S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, R. S. Ruoff, ACS Nano 2008, 2, 572.
- 11a) R. Snyder, B. Thomson, B. Bartges, D. Czerniawski, P. Painter, Macromolecules 1989, 22, 4166; b) H. Yang, S. Jiang, H. Fang, X. Hu, G. Duan, H. Hou, Spectrochim. Acta, Part A 2018, 200, 339; c) G. Duan, A. Greiner, Macromol. Mater. Eng. 2019, 304, 1800669; d) S. Jiang, D. Han, C. Huang, G. Duan, H. Hou, Mater. Lett. 2018, 216, 81.
- 12a) C. Pope, J. Chem. Educ. 1997, 74, 129; b) N. Tombros, C. Jozsa, M. Popinciuc, H. Jonkman, B. Wees, Nature 2007, 448, 571.
- 13a) L. Liu, R. Zhang, Y. Liu, H. Zhu, W. Tan, G. Zhu, Y. Wang, Trans. Tianjin Univ. 2018, 24, 555; b) W. Wu, J. Su, M. Jia, W. Zhong, Z. Li, W. Li, J. Mater. Chem. A 2019, 7, 13007.
- 14Y. Chen, D. Han, W. Ouyang, S. Chen, H. Hou, Y. Zhao, H. Fong, Compos. Part B 2012, 43, 2382.
- 15S. Park, J. An, R. Piner, I. Jung, D. Yang, A. Velamakanni, S. Nguyen, R. Ruoff, Chem. Mater. 2008, 20, 6592.
- 16F. Tuinstra, J. L. Koenig, J. Chem. Phys. 1970, 53, 1126.
- 17a) C. Peng, G. H. Ning, J. Su, G. Zhong, W. Tang, B. Tian, C. Su, D. Yu, L. Zu, J. Yang, M. F. Ng, Y. S. Hu, Y. Yang, M. Armand, K. Loh, Nat. Energy 2017, 2, 17074; b) S. Zhang, W. Huang, P. Hu, C. Huang, C. Shang, C. Zhang, R. Yang, G. Cui, J. Mater. Chem. A 2014, 3, 1896; c) H. Z. G. Gao, C. Li, D. Wang, C. Shen, Mater. Rep. 2020, 34, 161.
- 18X. Han, G. Qing, J. Sun, T. Sun, Angew. Chem. 2012, 51, 5147.
- 19a) J. Wu, X. Rui, G. Long, W. Chen, Q. Yan, Q. Zhang, Angew. Chem. 2015, 54, 7354; b) T. Gu, M. Zhou, B. Huang, S. Cao, J. Wang, Y. Tang, K. Wang, S. Cheng, K. Jiang, Chem. Eng. J. 2019, 373, 501.
- 20a) W. Zhang, Y. Song, S. He, L. Shang, R. Ma, L. Jia, H. Wang, Nanoscale 2019, 11, 20910; b) Y. Song, W. Zhang, S. He, L. Shang, R. Ma, L. Jia, H. Wang, ACS Appl. Mater. Interfaces 2019, 11, 33676.
- 21a) S. Liu, W. Xu, C. Ding, J. Yu, D. Fang, Y. Ding, H. Hou, Appl. Surf. Sci. 2019, 494, 94; b) Y. Ko, S. Park, K. Y. Jung, Y. Kang, Nano Lett. 2013, 13, 5462.
- 22a) S. Yuan, W. Chen, L. Zhang, Z. Liu, J. Liu, T. Liu, G. Li, Q. Wang, Small 2019, 15, 1903311; b) S. Yuan, Y. Zhao, W. Chen, C. Wu, X. Wang, L. Zhang, Q. Wang, ACS Appl. Mater. Interfaces 2017, 9, 21781.
- 23a) C. X. Zu, H. Li, Energy Environ. Sci. 2011, 4, 2614; b) M. Bhosale, S. Chae, J. Kim, J. Y. Choi, J. Mater. Chem. A 2018, 6, 19885.
- 24a) Y. Sun, J. Tang, K. Zhang, J. Yuan, J. Li, D. M. Zhu, K. Ozawa, L. C. Qin, Nanoscale 2017, 9, 2585; b) R. Mukherjee, A. V. Thomas, A. Krishnamurthy, N. Koratkar, ACS Nano 2012, 6, 7867.
- 25G. Che, B. Lakshmi, E. Fisher, C. Martin, Nature 1998, 393, 346.
- 26J. Li, M. Luo, Z. Ba, Z. Wang, L. Chen, Y. Li, M. Li, H.-B. Li, J. Dong, X. Zhao, Q. Zhang, J. Mater. Chem. A 2019, 7, 19112.
- 27Z. Song, T. Xu, M. Gordin, Y. Jiang, I. T. Bae, Q. Xiao, H. Zhan, J. Liu, D. Wang, Nano Letters 2012, 12, 2205.
- 28Y. Meng, H. Wu, Y. Zhang, Z. Wei, J. Mater. Chem. A 2014, 2, 10842.
- 29H. Wu, K. Wang, Y. Meng, K. Lu, Z. Wei, J. Mater. Chem. A 2013, 1, 6366.
- 30H. Wu, S. Shevlin, Q. Meng, W. Guo, Y. Meng, K. Lu, Z. Wei, Z. X. Guo, Adv. Mater. 2014, 26, 3338.
- 31H. Lyu, P. Li, J. Liu, S. Mahurin, J. Chen, D. Hensley, G. Veith, Z. Guo, S. Dai, X. G. Sun, ChemSusChem 2018, 11, 763.
- 32J. Zhao, T. Kang, Y. Chu, P. Chen, F. Jin, Y. Shen, L. Chen, Nano Res. 2019, 12, 1355.
- 33M. H. Jung, R. V. Ghorpade, J. Electrochem. Soc. 2018, 165, A2476.
- 34G. Hernández, M. Salsamendi, S. Morozova, E. Lozinskaya, D. Shanmukaraj, Y. Vygodskii, A. Shaplov, D. Mecerreyes, J. Polymer Sci., Part A 2018, 56, 714.
- 35a) Y. Ding, H. Hou, Y. Zhao, Z. Zhu, H. Fong, Prog. Polymer Sci. 2016, 61, 67; b) G. Duan, S. Liu, J. Shaohua, H. Hou, J. Mater. Sci. 2019, 54, 6719; c) S. Liu, Y. Zeng, H. Fang, Q. Guo, L. Sui, H. Hou, RSC Adv. 2018, 8, 25568.