Template-Free Synthesis of Hierarchical Composite Nanotubes with Superior Lithium and Sodium Storage Performance
Zunxian Yang
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorJianhua Huang
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorYufei Zhang
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorBingqing Ye
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorShimin Lin
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorJiahui Liu
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorYuliang Ye
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorKang Zheng
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorGanzhen Lu
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorTailiang Guo
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorCorresponding Author
Xuebin Yu
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Department of Materials Science, Fudan University, Shanghai, 200433 P. R. China
Search for more papers by this authorZunxian Yang
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorJianhua Huang
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorYufei Zhang
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorBingqing Ye
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorShimin Lin
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorJiahui Liu
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorYuliang Ye
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorKang Zheng
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorGanzhen Lu
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorTailiang Guo
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Search for more papers by this authorCorresponding Author
Xuebin Yu
National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350116 P. R. China
Department of Materials Science, Fudan University, Shanghai, 200433 P. R. China
Search for more papers by this authorAbstract
2D transition metal disulfides are one of the most preferred materials for lithium-/sodium-ion batteries (LIBs). However, complex processes and structural instability during cycling are challenges faced. Herein, the hierarchical composite nanotubes CeO2@C@MoS2 (MS/CNTs) are prepared by electrostatic spinning, followed by a simple carbon coating method. The as-prepared composite nanotubes with self-assembled layer structures are characterized by a more stable structure compared with traditional nanofibers due to the existence of a dense skeleton. As a result of the stable framework structure, MS/CNTs exhibit excellent electrochemical performance in LIBs (1002 mA hg−1 at 0.1 A g−1 and 690 mA hg−1 at 1 A g−1 after 500 cycles) and super-long cyclic stability and electrochemical performance (550 mA hg−1 at 2 A g−1 after 2400 cycles). MS/CNTs also show excellent storage performance in sodium batteries (440 mA hg−1 at 0.5 A g−1, 400 mA hg−1 at 1 A g−1). The stability of MoS2 nanotubes is effectively improved by chemical and physical methods, mainly due to the support of the CeO2@C, metal–organic framework (MOF) tube skeleton, which avoids the shedding of nanotubes after cycling, maintaining a unique structural topography even after 500 cycles.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201901356-sup-0001-SuppData-S1.doc7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. H. Kong, C. Y. Zhao, Y. F. Wei, X. H. Lu, ACS Appl. Mater. Interfaces 2015, 7, 24279.
- 2Y. F. Wang, K. Wang, C. Zhang, J. X. Zhu, J. S. Xu, T. X. Liu, Small 2019, 15, 1903816.
- 3S. Anwer, Y. X. Huang, B. S. Li, B. Govindan, K. Liao, W. J. Cantwell, F. Wu, R. J. Chen, L. X. Zheng, ACS Appl. Mater. Interfaces 2019, 11, 22323.
- 4J. W. Kang, H. G. Feng, P. Huang, Q. M. Su, S. J. Dong, W. C. Jiao, X. J. Chen, G. H. Du, Y. Yu, B. S. Xu, Energy Technol. 2019, 7, 1801086.
- 5Y. Rheem, Y. Han, K. H. Lee, S. M. Choi, N. V. Myung, Nanotechnology 2017, 28, 1.
- 6X. P. Lin, D. Y. Xue, L. Z. Zhao, F. Y. Zong, X. C. Duan, X. Pan, J. M. Zhang, Q. H. Li, Chem. Eng. J. 2019, 356, 483.
- 7J. G. Zong, F. Wang, Y. X. Long, M. S. Zhao, S. Yang, X. P. Song, Energy Technol. 2019, 7, 1801147.
- 8G. H. Yang, X. Li, Y. Y. Wang, Q. Y. Li, Z. X. Yan, L. S. Cui, S. H. Sun, Y. H. Qu, H. Q. Wang, Electrochim. Acta 2019, 293, 47.
- 9J. W. Jung, W. H. Ryu, S. Yu, C. Kim, S. H. Cho, I. D. Kim, ACS Appl. Mater. Interfaces 2016, 8, 26758.
- 10X. T. Zhu, W. N. Ren, Y. P. Yang, C. W. Cheng, Energy Technol. 2019, 7, 216.
- 11G. D. Li, X. Y. Zeng, T. D. Zhang, W. Y. Ma, W. P. Li, M. Wang, Crystengcomm 2014, 16, 10754.
- 12J. Mei, T. Liao, G. A. Ayoko, Z. Q. Sun, ACS Appl. Mater. Interfaces 2019, 11, 28205.
- 13H. J. Zheng, X. Q. Li, Q. Jia, ACS Appl. Mater. Interfaces 2018, 10, 19914.
- 14B. B. Wang, K. Chen, G. Wang, X. J. Liu, H. Wang, J. T. Bai, Nanoscale 2019, 11, 968.
- 15Y. P. Huang, Y. E. Miao, L. S. Zhang, W. W. Tjiu, J. S. Pan, T. X. Liu, Nanoscale 2014, 6, 10673.
- 16C. Y. Zhao, J. H. Kong, L. P. Yang, X. Y. Yao, S. L. Phua, X. H. Lua, Chem. Commun. 2014, 50, 9672.
- 17Y. Luo, Y. Zhang, X. Fang, J. Ren, W. Weng, Y. Jiang, H. Sun, B. Wang, X. Cheng, H. Peng, J. Mater. Chem. A 2015, 3, 17553.
- 18Y. Li, R. P. Zhang, W. Zhou, X. Wu, H. B. Zhang, J. Zhang, ACS Nano 2019, 13, 5533.
- 19H. Wu, C. Y. Hou, G. Z. Shen, T. Liu, Y. L. Shao, R. Xiao, H. Z. Wang, Nano Res. 2018, 11, 5866.
- 20U. K. Sen, P. Johari, S. Basu, C. Nayak, S. Mitra, Nanoscale 2014, 6, 10243.
- 21C. Senthil, S. Amutha, R. Gnanamuthu, K. Vediappan, C. W. Lee, Appl. Surf. Sci. 2019, 491, 180.
- 22P. P. Wang, H. Y. Sun, Y. J. Ji, W. H. Li, X. Wang, Adv. Mater. 2014, 26, 964.
- 23H. H. Gu, Y. P. Huang, L. Z. Zuo, W. Fan, T. X. Liu, Electrochim. Acta 2016, 219, 604.
- 24Y. Jeon, J. Lee, M. Kim, J. Oh, T. Hwang, Y. Piao, Nanoscale 2019, 11, 4837.
- 25S. T. Wu, B. L. Wang, Z. Ahmad, J. Huang, M. W. Chang, J. S. Li, Mater. Lett. 2017, 204, 73.
- 26S. S. Sainudeen, L. B. Asok, A. Varghese, A. S. Nair, G. Krishnan, RSC Adv. 2017, 7, 35160.
- 27Z. G. Zhu, Y. R. Liu, H. Q. Hou, W. X. Shi, F. S. Qu, F. Y. Cui, W. Wang, Environ. Sci. Technol. 2018, 52, 3027.
- 28H. J. Fan, U. Gosele, M. Zacharias, Small 2007, 3, 1660.
- 29J. Li, H. C. Zeng, J. Am. Chem. Soc. 2007, 129, 15839.
- 30T. P. Zhou, X. Y. Feng, X. Guo, W. W. Wu, S. Cheng, H. F. Xiang, Electrochim. Acta 2015, 174, 369.
- 31T. Sun, Z.-J. Li, H.-G. Wang, D. Bao, F.-L. Meng, X.-B. Zhang, Angew. Chem. Int. Ed. 2016, 55, 10662.
- 32Y. Liu, H. Jin, S. Zhu, Y. Liu, M. Long, Y. Zhou, D. Yan, Nanotechnology 2012, 23, 325602.
- 33Y. Zhao, L. Jiang, Adv. Mater. 2009, 21, 3621.
- 34M. X. Lu, C. L. Shao, K. X. Wang, N. Lu, X. Zhang, P. Zhang, M. Y. Zhang, X. H. Li, Y. C. Liu, ACS Appl. Mater. Interfaces 2014, 6, 9004.
- 35Y. Y. Shi, G. J. Liu, R. C. Jin, H. Xu, Q. Y. Wang, S. M. Gao, Carbon Energy 2019, 1, 253.
- 36H. Y. Xu, C. X. Peng, Y. H. Yan, F. Dong, H. Sun, J. H. Yang, S. Y. Zheng, Carbon Energy 2019, 1, 278.
10.1002/cey2.22 Google Scholar
- 37S. K. Xue, S. S. Yao, M. X. Jing, L. Zhu, X. Q. Shen, T. B. Li, Electrochim. Acta 2019, 299, 549.
- 38Y. E. Miao, Y. P. Huang, L. S. Zhang, W. Fan, F. L. Lai, T. X. Liu, Nanoscale 2015, 7, 11093.
- 39Q. Pan, Q. Zhang, F. Zheng, Y. Liu, Y. Li, X. Ou, X. Xiong, C. Yang, M. Liu, ACS Nano 2018, 12, 12578.
- 40X. Q. Xie, Z. M. Ao, D. W. Su, J. Q. Zhang, G. X. Wang, Adv. Funct. Mater. 2015, 25, 1393.
- 41J. R. Du, J. H. Liu, S. L. Yao, H. Q. Mao, J. Peng, X. Sun, Z. Cao, Y. D. Yang, B. Xiao, Y. G. Wang, P. F. Tang, X. M. Wang, Acta Biomater. 2017, 55, 296.
- 42J. Zhang, Y. D. Cao, C. A. Wang, R. Ran, ACS Appl. Mater. Interfaces 2016, 8, 8670.
- 43C. P. Yuan, H. G. Wang, J. Q. Liu, Q. Wu, Q. Duan, Y. H. Li, J. Colloid Interface Sci. 2017, 494, 274.
- 44G. L. Zhou, G. Yang, X. L. Li, B. Y. Chen, J. Fan, X. Hou, S. B. Zhou, ACS Appl. Mater. Interfaces 2018, 10, 14276.
- 45C. P. Gu, W. M. Guan, Y. W. Cui, Y. Chen, L. L. Gao, J. R. Huang, J. Mater. Chem. A 2016, 4, 17000.
- 46D. Xie, X. H. Xia, W. J. Tang, Y. Zhong, Y. D. Wang, D. H. Wang, X. L. Wang, J. P. Tu, J. Mater. Chem. A 2017, 5, 7578.
- 47Y. Jiang, D. Y. Song, J. Wu, Z. X. Wang, S. S. Huang, Y. Xu, Z. W. Chen, B. Zhao, J. J. Zhang, ACS Nano 2019, 13, 9100.
- 48G. C. Huang, T. Chen, W. X. Chen, Z. Wang, K. Chang, L. Ma, F. H. Huang, D. Y. Chen, J. Y. Lee, Small 2013, 9, 3693.
- 49C. Y. Zhao, J. H. Kong, X. Y. Yao, X. S. Tang, Y. L. Dong, S. L. Phua, X. H. Lu, ACS Appl. Mater. Interfaces 2014, 6, 6392.