A 3D Carbon Foam Derived from Phenol Resin via CsCl Soft-Templating Approach for High-Performance Supercapacitor
Tao Yan
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorZiyao Wan
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorKang Wang
Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorCorresponding Author
Maocong Hu
Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056 P. R. China
Search for more papers by this authorCorresponding Author
Xitao Wang
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorTao Yan
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorZiyao Wan
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorKang Wang
Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorCorresponding Author
Maocong Hu
Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056 P. R. China
Search for more papers by this authorCorresponding Author
Xitao Wang
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorAbstract
Carbon with a 3D foam structure is synthesized by a one-step strategy using low-molecular-weight phenolic resin as the precursor and CsCl as a salt template. Their electrochemical performance as electrodes is studied for symmetric supercapacitors. The distinct effect of CsCl addition amount on morphology, pore structure, electric conductivity, and electrochemical performance is further investigated. With appropriate CsCl addition amount, 3D carbon foam is harvested with abundant micropores and mesopores with a surface area beyond 1590 m2 g−1. It is tested as an electrode in a coin-type symmetric supercapacitor with 6 m KOH and 1 m TEABF4/MeCN as the electrolyte. The 3D carbon foam electrode displays specific capacitance of 259.3 F g−1 in 6 m KOH and 127.9 F g−1 in 1 m TEABF4/MeCN at 0.5 A g−1. Notably, it exhibits high energy density of 27.7 W h kg−1 in 1 m TEABF4/MeCN. After 10 000 cycles, the specific capacitance remains at 96.9% in 6 m KOH, indicating good cycle stability. The superior performance of 3D carbon foam is attributed to larger surface area, higher electric conductivity, and unique 3D foam structure with sufficient 3D ion-accessible channels. This work develops a simple, facile method to synthesize high-performance supercapacitor electrode materials.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1K. S. Kumar, N. Choudhary, Y. Jung, J. Thomas, ACS Energy Lett. 2018, 3, 482.
- 2M. Fu, W. Chen, X. Zhu, B. Yang, Q. Liu, Carbon 2019, 141, 748.
- 3M. Sevilla, R. Mokaya, Energy Environ. Sci. 2014, 7, 1250.
- 4A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, J. Mater. Chem. A 2017, 5, 12653.
- 5P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845.
- 6Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 2016, 45, 5925.
- 7R. R. Salunkhe, Y. V. Kaneti, Y. Yamauchi, ACS Nano 2017, 11, 5293.
- 8M.-C. Hsiao, C.-Y. Chang, L.-J. Niu, F. Bai, L.-J. Li, H.-H. Shen, J.-Y. Lin, T.-W. Lin, J. Power Sources 2017, 345, 156.
- 9T.-W. Lin, T. Sadhasivam, A.-Y. Wang, T.-Y. Chen, J.-Y. Lin, L. Shao, ChemElectroChem 2018, 5, 1024.
- 10X. Song, X. Ma, Y. Li, L. Ding, R. Jiang, Appl. Surf. Sci. 2019, 487, 189.
- 11Z. Yang, J. Tian, Z. Yin, C. Cui, W. Qian, F. Wei, Carbon 2019, 141, 467.
- 12S. Dai, Z. Liu, B. Zhao, J. Zeng, H. Hu, Q. Zhang, D. Chen, C. Qu, D. Dang, M. Liu, J. Power Sources 2018, 387, 43.
- 13J. Sun, Y. Huang, C. Fu, Z. Wang, Y. Huang, M. Zhu, C. Zhi, H. Hu, Nano Energy 2016, 27, 230.
- 14C. Choi, J. A. Lee, A. Y. Choi, Y. T. Kim, X. Lepro, M. D. Lima, R. H. Baughman, S. J. Kim, Adv. Mater. 2014, 26, 2059.
- 15B. You, L. Wang, L. Yao, J. Yang, Chem. Commun. 2013, 49, 5016.
- 16L. Yao, Q. Wu, P. Zhang, J. Zhang, D. Wang, Y. Li, X. Ren, H. Mi, L. Deng, Z. Zheng, Adv. Mater. 2018, 30, 1706054.
- 17T.-W. Lin, M.-C. Hsiao, A.-Y. Wang, J.-Y. Lin, ChemElectroChem 2017, 4, 620.
- 18F. Wu, J. Gao, X. Zhai, M. Xie, Y. Sun, H. Kang, Q. Tian, H. Qiu, Carbon 2019, 147, 242.
- 19G. Wu, P. Tan, X. Wu, L. Peng, H. Cheng, C.-F. Wang, W. Chen, Z. Yu, S. Chen, Adv. Funct. Mater. 2017, 27, 1702493.
- 20L. Chen, T. Ji, L. Mu, J. Zhu, Carbon 2017, 111, 839.
- 21J. Wang, S. Kaskel, J. Mater. Chem. 2012, 22, 23710.
- 22J. Zhu, Y. Shan, T. Wang, H. Sun, Z. Zhao, L. Mei, Z. Fan, Z. Xu, I. Shakir, Y. Huang, B. Lu, X. Duan, Nat. Commun. 2016, 7, 13432.
- 23L. Miao, D. Zhu, M. Liu, H. Duan, Z. Wang, Y. Lv, W. Xiong, Q. Zhu, L. Li, X. Chai, L. Gan, Chem. Eng. J. 2018, 347, 233.
- 24M. Liu, J. Niu, Z. Zhang, M. Dou, F. Wang, Nano Energy 2018, 51, 366.
- 25X. H. Zhang, K. Zhang, H. X. Li, Q. Wang, L. E. Jin, Q. Cao, J. Appl. Electrochem. 2018, 48, 415.
- 26J. Zhao, Y. Jiang, H. Fan, M. Liu, O. Zhuo, X. Wang, Q. Wu, L. Yang, Y. Ma, Z. Hu, Adv. Mater. 2017, 29, 1604569.
- 27W. Gao, Y. Wan, Y. Dou, D. Zhao, Adv. Energy Mater. 2011, 1, 115.
- 28M. Sevilla, C. Sanchís, T. Valdés-Solís, E. Morallón, A. B. Fuertes, Carbon 2008, 46, 931.
- 29M.-S. Wu, W.-H. Hsu, J. Power Sources 2015, 274, 1055.
- 30Q. Wang, Y. F. Nie, X. Y. Chen, Z. H. Xiao, Z. J. Zhang, Electrochim. Acta 2016, 200, 247.
- 31M. Demir, Z. Kahveci, B. Aksoy, N. K. R. Palapati, A. Subramanian, H. T. Cullinan, H. M. El-Kaderi, C. T. Harris, R. B. Gupta, Ind. Eng. Chem. Res. 2015, 54, 10731.
- 32C. J. Wang, D. P. Wu, H. J. Wang, Z. Y. Gao, F. Xu, K. Jiang, J. Mater. Chem. A 2018, 6, 1244.
- 33C. Xue, L. Feng, Y. Hao, F. Yang, Q. Zhang, X. Ma, X. Hao, Green Chem. 2018, 20, 4983.
- 34B. Liu, M. Yang, H. Chen, Y. Liu, D. Yang, H. Li, J. Power Sources 2018, 397, 1.
- 35K. Okada, N. Yamamoto, Y. Kameshima, A. Yasumori, J. Colloid Interface Sci. 2003, 262, 179.
- 36N. Fechler, T. P. Fellinger, M. Antonietti, Adv. Mater. 2013, 25, 75.
- 37C. Nita, M. Bensafia, C. Vaulot, L. Delmotte, C. Matei Ghimbeu, Carbon 2016, 109, 227.
- 38H.-K. Kim, A. R. Kamali, K. C. Roh, K.-B. Kim, D. J. Fray, Energy Environ. Sci. 2016, 9, 2249.
- 39J. Li, L. Tian, F. Liang, J. Wang, L. Han, J. Zhang, S. Ge, L. Dong, H. Zhang, S. Zhang, Carbon 2019, 141, 739.
- 40D. Zeng, Y. Dou, M. Li, M. Zhou, H. Li, K. Jiang, F. Yang, J. Peng, J. Mater. Sci. 2018, 53, 8372.
- 41Q. Li, M. Hu, K. Wang, X. Wang, Catal. Today 2019, 330, 228.
- 42J. Zhang, S. Ali, F. Liu, A. Ali, K. Wang, X. Wang, J. Electron. Mater. 2019, 48, 4196.
- 43Y. W. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537.
- 44Y.-R. Son, S.-J. Park, Chem. Eng. J. 2019, 373, 1020.
- 45A. B. Fuertes, T. A. Centeno, J. Mater. Chem. 2005, 15, 1079.
- 46Y. R. Son, S. J. Park, Sci. Rep. 2018, 8, 17601.
- 47X. Y. Chen, C. Chen, Z. J. Zhang, D. H. Xie, J. Mater. Chem. A 2013, 1, 7379.
- 48T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N. M. D. Brown, Carbon 2005, 43, 153.
- 49T. Horikawa, N. Sakao, T. Sekida, J. I. Hayashi, D. D. Do, M. Katoh, Carbon 2012, 50, 1833.
- 50D. Zhang, M. Han, Y. Li, J. He, B. Wang, K. Wang, H. Feng, J. Power Sources 2017, 372, 260.
- 51Y. Hao, F. Xu, M. Qian, J. Xu, W. Zhao, F. Huang, RSC Adv. 2017, 7, 10901.
- 52Z. Yu, X. Wang, Y.-N. Hou, X. Pan, Z. Zhao, J. Qiu, Carbon 2017, 117, 376.
- 53S. Zhang, N. Pan, Adv. Energy Mater. 2015, 5, 1401401.
- 54Y. Liang, F. Liang, H. Zhong, Z. Li, R. Fu, D. Wu, J. Mater. Chem. A 2013, 1, 7000.
- 55P. Hao, Z. Zhao, Y. Leng, J. Tian, Y. Sang, R. I. Boughton, C. P. Wong, H. Liu, B. Yang, Nano Energy 2015, 15, 9.
- 56S. Dutta, A. Bhaumik, K. C. W. Wu, Energy Environ. Sci. 2014, 7, 3574.
- 57P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, H. Cai, H. Liu, C. P. Wong, A. Umar, Nanoscale 2014, 6, 12120.
- 58Q. Xie, X. Huang, Y. Zhang, S. Wu, P. Zhao, Appl. Surf. Sci. 2018, 443, 412.
- 59J. Qu, C. Geng, S. Lv, G. Shao, S. Ma, M. Wu, Electrochim. Acta 2015, 176, 982.
- 60T. Le, Y. Yang, Z. Huang, F. Kang, J. Power Sources 2015, 278, 683.
- 61J. Li, R. Xiao, M. Li, H. Zhang, S. Wu, C. Xia, Fuel Process. Technol. 2019, 192, 239.
- 62Y. Yang, P. Li, S. Wu, X. Li, E. Shi, Q. Shen, D. Wu, W. Xu, A. Cao, Q. Yuan, Chemistry 2015, 21, 6157.
- 63S. Song, F. Ma, G. Wu, D. Ma, W. Geng, J. Wan, J. Mater. Chem. A 2015, 3, 18154.
- 64F. Ma, D. Ma, G. Wu, W. Geng, J. Shao, S. Song, J. Wan, J. Qiu, Chem. Commun. 2016, 52, 6673.
- 65Z. Liu, D. Fu, F. Liu, G. Han, C. Liu, Y. Chang, Y. Xiao, M. Li, S. Li, Carbon 2014, 70, 295.
- 66W. Yang, W. Yang, F. Ding, L. Sang, Z. P. Ma, G. J. Shao, Carbon 2017, 111, 419.
- 67Y.-E. Yoo, J. Park, W. Kim, Appl. Surf. Sci. 2018, 433, 765.
- 68D. W. Wang, Y. G. Min, Y. H. Yu, J. Solid State Electrochem. 2015, 19, 577.
- 69B. Chang, H. Yin, X. Zhang, S. Zhang, B. Yang, Chem. Eng. J. 2017, 312, 191.
- 70G. A. Ferrero, A. B. Fuertes, M. Sevilla, J. Mater. Chem. A 2015, 3, 2914.
- 71Y.-Z. Ma, B.-J. Yu, Y. Guo, C.-Y. Wang, J. Solid State Electrochem. 2016, 20, 2231.
- 72K. Hung, C. Masarapu, T. Ko, B. Wei, J. Power Sources 2009, 193, 944.
- 73W. Zhao, Y. Zhu, L. Zhang, Y. Xie, X. Ye, J. Alloys Compd. 2019, 787, 1.
- 74J. Sure, A. Ravi Shankar, S. Ramya, U. Kamachi Mudali, Ceram. Int. 2012, 38, 2803.