Vanadium Sulfide@Sulfur Composites as High-Performance Cathode for Advanced Lithium–Sulfur Batteries
Xiaojuan Chen
School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorCorresponding Author
Gaohui Du
Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorMiao Zhang
Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorAbul Kalam
Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413 Saudi Arabia
Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413 Saudi Arabia
Search for more papers by this authorShukai Ding
Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorQingmei Su
Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorBingshe Xu
Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorAbdullah G. Al-Sehemi
Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413 Saudi Arabia
Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413 Saudi Arabia
Search for more papers by this authorXiaojuan Chen
School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorCorresponding Author
Gaohui Du
Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorMiao Zhang
Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorAbul Kalam
Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413 Saudi Arabia
Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413 Saudi Arabia
Search for more papers by this authorShukai Ding
Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorQingmei Su
Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorBingshe Xu
Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorAbdullah G. Al-Sehemi
Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413 Saudi Arabia
Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413 Saudi Arabia
Search for more papers by this authorAbstract
Lithium–sulfur batteries have attracted a lot of attention in recent years due to their high theoretical capacity of 1675 mAh g−1 and low cost. However, the shuttle effect caused by the dissolution and migration of polysulfides and the destruction of cathode particles due to volume expansion during lithiation are key issues for their practical application. Herein, a one-pot hydrothermal preparation of a VS2@S composite as a cathode for lithium–sulfur batteries is reported. The VS2@S composite shows uniform and flowerlike aggregates of nanoparticles of sizes around 50–80 nm. The porous structure among VS2@S nanoparticles can accommodate the volumetric expansion occurring during sulfur lithiation. Adsorption capability testing proves a strong interaction between VS2 and polysulfides. Therefore, the as-prepared VS2@S composite exhibits good electrochemical performance, with a discharge capacity of 413 mAh g−1 after 200 cycles at a 1 C rate. After various rate cyclings from 0.1 to 2 C, the VS2@S electrode delivers a reversible capacity of 884 mAh g−1 when the current density switches to 0.1 C, demonstrating a notable improvement compared with pure sulfur electrodes.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201901163-sup-0001-SuppData-S1.docx390.8 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. J. Peng, J. Q. Huang, X. B. Cheng, Q. Zhang, Adv. Energy Mater. 2017, 7, 1700260.
- 2Q. Xiang, S. Li, X. Zou, Y. Qiang, B. Hu, Y. Cen, C. Xu, L. Liu, Y. Zhou, C. Chen, Appl. Surf. Sci. 2018, 462, 65.
- 3C. Pei, F. Xiong, J. Sheng, Y. Yin, S. Tan, D. Wang, C. Han, Q. An, L. Mai, ACS Appl. Mater. Interfaces 2017, 9, 17060.
- 4X. Wei, Y. Li, H. Peng, D. Gao, Y. Ou, Y. Yang, J. Hu, Y. Zhang, P. Xiao, Chem. Eng. J. 2019, 355, 336.
- 5Y. Sun, N. Liu, Y. Cui, Nat. Energy 2016, 11, 6071.
- 6X. Qin, J. Wu, Z. L. Xu, Carbon 2019, 141, 16.
- 7X. Qin, H. Zhang, J. Wu, X. Chu, Y. B. He, C. Han, Carbon 2015, 87, 347.
- 8G. Liang, X. Qin, J. Zou, L. Luo, Y. Wang, M. Wu, Carbon 2018, 127, 424.
- 9X. L. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500.
- 10A. Manthiram, Y. Z. Fu, S. H. Chung, C. X. Zu, Y. S. Su, Chem. Rev. 2014, 114, 11751.
- 11Z. L. Xu, J. K. Kim, K. Kang, Nano. Today 2018, 19, 84.
- 12T. Chen, Z. Zhang, B. Cheng, R. Chen, Y. Hu, L. Ma, G. Zhu, J. Liu, J. Am. Chem. Soc. 2017, 139, 12710.
- 13D. Lv, J. Zheng, Q. Li, X. Xie, Adv. Energy Mater. 2015, 5, 1402290.
- 14A. Manthiram, Y. Fu, Acc. Chem. Res. 2013, 46, 1125.
- 15G. He, C. J. Hart, X. Liang, A. Garsuch, L. F. Nazar, ACS Appl. Mater. Interfaces 2014, 6, 10917.
- 16H. Chen, C. Wang, W. Dong, W. Lu, Z. Du, L. Chen, Nano Lett. 2015, 15, 798.
- 17C. P. Yang, Y. X. Yin, Y. G. Guo, L. J. Wan, J. Am. Chem. Soc. 2015, 137, 2215.
- 18L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, J. Liu, Adv. Mater. 2012, 24, 1176.
- 19M. Yan, Y. Zhang, Y. Li, Y. Huo, Y. Yu, C. Wang, J. Jin, L. Chen, T. Hasan, B. Wang, B. L. Su, J. Mater. Chem. A 2016, 4, 9403.
- 20X. Wang, G. Li, J. Li, Y. Zhang, W. Ahn, A. Yu, Z. Chen, Energy Environ. Sci. 2016, 9, 2533.
- 21X. Tao, J. Wang, C. Liu, H. Wang, H. Yao, G. Zheng, Z. W. Seh, Q. Cai, W. Li, G. Zhou, C. Zu, Y. Cui, Nat. Commun. 2016, 7, 11203.
- 22Z Yuan, H. J. Peng, T. Z. Hou, J. Q. Huang, C. M. Chen, D. W. Wang, X. B. Cheng, Nano Lett. 2016, 1,, 519.
- 23S. S. Zhang, D. T. Trana, J. Mater. Chem. A 2016, 4, 4371.
- 24Z. W. Seh, J. H. Yu, W. Li, P.-C. Hsu, H. Wang, Y. Sun, H. Yao, Q. Zhang, Y. Cui, Nat. Commun. 2014, 5, 5017.
- 25Q. Pang, D. Kundu, L. F. Nazar, Mater. Horiz. 2016, 3, 130.
- 26X. Liang, A. Garsuch, L. F. Nazar, Angew. Chem., Int. Ed. 2015, 54, 3907.
- 27J. Zhou, R. Li, X. Fan, Y. Chen, R. Han, W. Li, J. Zheng, B. Wang, X. Li, Energy Environ. Sci. 2014, 7, 2715.
- 28G. Zheng, Q. F. Zhang, J. J. Cha, Y. Yang, W. Y. Li, Z. W. She, Y. Cui, Nano Lett. 2013, 13, 1265.
- 29T. Q. Guo, Y. Z. Song, Z. T. Sun, Y. H. Wu, Y. Xia, Y. Y. Li, J. H. Sun, K. Jiang, S. X. Dou, J. Y. Sun, J. Energy Chem. 2020, 42, 34.
- 30Y. Z. Song, W. Zhao, L. Kong, L. Zhang, X. Y. Zhu, Y. L. Shao, Energy Environ. Sci. 2018, 11, 2620.
- 31N. Wei, J. S. Cai, R. C. Wang, M. L. Wang, W. Lv, H. N. Ci, J. Y. Sun, Z. F. Liu, Nano Energy 2019, 66, 104190.
- 32G. M. Zhou, H. Z. Tian, Y. Jin, X. Y. Tao, B. F. Liu, R. F. Zhang, P. Natl. Acad. Sci. USA 2017, 114, 840.
- 33W. B. Li, J. F. Huang, L. L. Feng, L. Y. Cao, Y. Q. Feng, H. J. Wang, J. Y. Li, C. Y. Yao, J. Mater. Chem. A 2017, 5,, 20217.
- 34J. Y. Liao, A. Manthiram, Nano. Energy 2015, 18, 20.
- 35Q. Q. Ji, C. Li, J. Wang, J. J. Niu, Y. Gong, Z. P. Zhang, Q. Y. Fang, Y. Zhang, J. P. Shi, L. Liao, X. S. Wu, L. Gu, Z. F. Liu, Y. F. Zhang, Nano Lett. 2017, 17, 4908.
- 36X. Zhu, W. Zhao, Y. Song, Q. Li, Adv. Energy Mater. 2018, 8, 1800201.
- 37Z. B. Cheng, Z. B. Xiao, H. Pan, S. Q. Wang, R. H. Wang, Adv. Energy Mater. 2018, 8, 1702337.
- 38J. Zhou, L. Wang, M. Yang, J. Wu, F. Chen, W. Huang, Y. Li, Adv. Mater. 2017, 29, 1702061.
- 39H. Wu, Y. Huan, D. Wang, M. Li, X. Cheng, Z. M. Bai, P. Wu, W. C. Peng, R. Zhang, Z. Ji, M. Q. Zou, X. Q. Yan, J. Electrochem. Soc. 2019, 166, A188.
- 40D. Yu, Q. Pang, Y. Gao, Y. Wei, C. Wang, G. Chen, F. Du, Energy Storage Mater. 2018, 11, 1.
- 41W. Fang, H. Zhao, Y. Xie, J. Fang, J. Xu, Z. Chen, ACS Appl. Mater. Interfaces 2015, 7, 13044.
- 42R. Sun, Q. Wei, Q. Li, W. Luo, Q. An, J. Sheng, D. Wang, W. Chen, L. Mai, ACS Appl. Mater. Interfaces 2015, 7, 20902.
- 43N. N. Wang, Z. F. Xu, X. Xu, T. Liao, B. Tang, Z. C. Bai, S. X. Dou, ACS Appl. Mater. Interfaces 2018, 10, 1613573.
- 44W. G. Wang, X. Wang, L. Y. Tian, Y. L. Wang, S. H. Ye, J. Mater. Chem. A 2014, 2, 4316.
- 45H. H. Deng, L. B. Yao, Q. A. Huang, Q. M. Su, J. Zhang, G. H. Du, Mater. Res. Bull. 2016, 84, 218.
- 46Y. J. Li, J. M. Fan, M. S. Zheng, Q. F. Dong, Energy Environ. Sci. 2016, 9, 1998.
- 47X. Y. Zhou, F. Chen, J. Yang, L. Ma, T. Bai, B. Long, Q. Liao, C. Liu, J. Electroanal. Chem. 2015, 747, 59.