Fabrication of Graphene Oxide Supported Acid–Base Bifunctional Metal–Organic Frameworks as Efficient Catalyst for Glucose to 5-Hydroxymethylfurfural Conversion
Yanan Wei
Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212000 P. R. China
Search for more papers by this authorCorresponding Author
Yunlei Zhang
Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212000 P. R. China
Search for more papers by this authorBing Li
Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212000 P. R. China
Search for more papers by this authorChanghao Yan
Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212000 P. R. China
Search for more papers by this authorZulin Da
Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212000 P. R. China
Search for more papers by this authorMinjia Meng
Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212000 P. R. China
Search for more papers by this authorChunbo Liu
Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212000 P. R. China
Search for more papers by this authorCorresponding Author
Yongsheng Yan
Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212000 P. R. China
Search for more papers by this authorYanan Wei
Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212000 P. R. China
Search for more papers by this authorCorresponding Author
Yunlei Zhang
Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212000 P. R. China
Search for more papers by this authorBing Li
Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212000 P. R. China
Search for more papers by this authorChanghao Yan
Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212000 P. R. China
Search for more papers by this authorZulin Da
Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212000 P. R. China
Search for more papers by this authorMinjia Meng
Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212000 P. R. China
Search for more papers by this authorChunbo Liu
Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212000 P. R. China
Search for more papers by this authorCorresponding Author
Yongsheng Yan
Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212000 P. R. China
Search for more papers by this authorAbstract
Developing a supported-type metal–organic frameworks (MOFs) catalyst with multifunctional active sites is essential to broaden its application as a heterogeneous catalyst. Herein, polydopamine (PDA)-modified graphene oxide (PDA@GO) is used as a support to prepare an acid–base bifunctional UiO-66-type MOFs catalyst in green solution (aqueous solution) through a one-pot method. By adjusting the amount between GO, PDA, UiO-66-NH2, and UiO-66-SO3H, the heterogeneous solid catalyst UiO-66-SO3H-NH2/PDA@GO with uniform distribution of MOFs can be obtained. The morphology and various properties of the catalyst are characterized and the catalytic performance of the catalyst for the conversion of glucose to 5-hydroxymethylfurfural (5-HMF) is demonstrated and discussed. Herein, the supported-type MOFs catalyst offers an alternative way to promote current acid–base catalytic systems for achieving efficient production of 5-HMF from sustainable biomass.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1I. Jiménenz-Morales, A. Teckchandani-Ortiz, J. Santamaría-Gonzalez, P. Maireles-Torres, A. Jiménez-López, Appl. Catal., B 2014, 144, 22.
- 2D. Song, Q. Zhang, Y. Sun, P. Zhang, G. Y. Hang, J. Hu, ChemCatChem 2018, 10, 4967.
- 3P. Zhao, Y. Zhang, W. Yong, H. Cui, S. Feng, X. Sun, L. Zhang, Green Chem. 2018, 20, 1551.
- 4P. Körner, D. Jung, A. Kruse, Green Chem. 2018, 20, 2231.
- 5X. Liu, H. Li, H. Pan, H. Zhang, S. Huang, K. Yang, W. Xue, S. Yang, J. Energy Chem. 2016, 25, 523.
- 6Y. Zhang, B. Li, Y. Wei, C. Yan, M. Meng, Y. Yan, J. Taiwan Inst. Chem. E. 2019, 96, 93.
- 7Y. Zhang, Y. Chen, J. Pan, M. Liu, P. Jin, Y. Yan, Chem. Eng. J. 2017, 313, 1593.
- 8Y. Zhang, J. Pan, Y. Chen, W. Shi, Y. Yan, L. Yu, Chem. Eng. J. 2016, 283, 956.
- 9Y. Zhang, Y. Shen, Y. Chen, Y. Yan, J. Pan, Q. Xiong, W. Shi, L. Yu, Chem. Eng. J. 2016, 294, 222.
- 10S. Mondal, J. Mondal, A. Bhaumik, ChemCatChem 2015, 7, 3570.
- 11Y. Zhang, P. Jin, M. Liu, J. Pan, Y. Yan, Y. Chen, Q. Xiong, AIChE J. 2017, 63, 4920.
- 12Y. Zhang, J. Pan, Y. Shen, W. Shi, C. Liu, L. Yu, ACS Sustain. Chem. Eng. 2015, 3, 871.
- 13S. Biswas, B. Dutta, A. Mannodi-Kanakkithodi, R. Clarke, W. Song, R. Ramprasad, S. L. Suib, Chem. Commun. 2017, 53, 11751.
- 14S. Yin, J. Sun, B. Liu, Z. Zhang, J. Mater. Chem. A 2015, 3, 4992.
- 15C. M. Lew, N. Rajabbeigi, M. Tsapatsis, Ind. Eng. Chem. Res. 2012, 51, 5364.
- 16J. Li, J. Liu, H. Liu, G. Xu, J. J. Zhang, J. Liu, G. Zhou, Q. Li, Z. Xu, Y. Fu, ChemSusChem 2017, 10, 1436.
- 17D. Garcés, L. Faba, E. Díaz, S. Ordóñez, ChemSusChem 2019, 12, 924.
- 18C. Xu, W. Ouyang, M. J. Muñoz-Batista, M. Fernández-García, R. Luque, ChemSusChem 2018, 11, 2604.
- 19A. Osatiashtiani, A. F. Lee, D. R. Brown, J. A. Melero, G. Morales, K. Wilson, Catal. Sci. Technol. 2014, 4, 333.
- 20S. S. Chen, I. K. M. Yu, D.-W. Cho, H. Song, D. C. W. Tsang, J.-P. Tessonnier, Y. S. Ok, C. S. Poon, ACS Sustain. Chem. Eng. 2018, 6, 16113.
- 21A. Osatiashtiani, A. F. Lee, M. Granollers, D. R. Brown, L. Olivi, G. Morales, J. A. Melero, K. Wilson, ACS Catal. 2015, 5, 4345.
- 22N. Candu, M. El Fergani, M. Verziu, B. Cojocaru, B. Jurca, N. Apostol, C. Teodorescu, V. I. Parvulescu, S. M. Coman, Catal. Today 2019, 325, 109.
- 23A. A. Marianou, C. M. Michailof, A. Pineda, E. F. Iliopoulou, K. S. Triantafyllidis, A. A. Lappas, Appl. Catal., A 2018, 555, 75.
- 24Y. Roman-Leshkov, J. N. Chheda, J. A. Dumesic, Science 2006, 312, 1933.
- 25H. Zhao, J. E. Holladay, H. Brown, Z. C. Zhang. Science 2007, 316, 1597.
- 26L. Cao, I. K. M. Yu, S. S. Chen, D. C. W. Tsang, L. Wang, X. Xiong, S. Zhang, Y. S. Ok, E. E. Kwon, H. Song, C. S. Poon, Bioresour. Technol. 2018, 252, 76.
- 27X. Li, K. Peng, X. Liu, Q. Xia, Y. Wang, ChemCatChem 2017, 9, 2739.
- 28B. Velaga, N. R. Peela, Microporous Mesoporous Mater. 2019, 279, 211.
- 29Y. Zhang, Q. Xiong, E. Zhu, M. Liu, J. Pan, Y. Yan, Energy Technol. Ger. 2018, 6, 1941.
- 30C. Tempelman, U. Jacobs, T Hut, E. P. Pina, M. Munster, N. Cherkasov, V. Degirmaenci, Appl. Catal., A 2019, 588, 117267.
- 31E. Sezgin, M. E. Kececi, S. Akmaz, S. N. Koc, Cellulose 2019, 26, 9035.
- 32P. Bhanja, A. Modak, S. Chatterjee, A. Bhaumik, ACS Sustain. Chem. Eng. 2017, 5, 2763.
- 33S. Marullo, C. Rizzo, A. Meli, F. D'Anna, ACS Sustain. Chem. Eng. 2019, 7, 5818.
- 34Y. Zhang, J. Zhao, K. Wang, L. Gao, M. Meng, Y. Yan, ChemistrySelect 2018, 3, 9378.
- 35W. Xie, F. Wan, Chem. Eng. J. 2019, 365, 40.
- 36S. Zhao, D. Chen, H. Xu, J. Mei, Z. Qu, P. Liu, Y. Cui, N. Yan, Chemosphere 2018, 197, 65.
- 37S. Edubilli, S. Gumma, Sep. Purif. Technol. 2019, 224, 85.
- 38H. J. An, M. Sarker, D. K. Yoo, S. H. Jhung, Chem. Eng. J. 2019, 373, 1064.
- 39P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Ferey, P. Couvreur, R. Gref, Nat. Mater. 2010, 9, 172.
- 40G. Akiyama, R. Matsuda, H. Sato, M. Takata, S. Kitagawa, Adv. Mater. 2011, 23, 3294.
- 41J. H. Cavka, S. Jakoobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850.
- 42Z. G. Hu, D. Zhao, Dalton T. 2015, 44, 19018.
- 43Z. Hu, Y. Peng, Y. Gao, Y. Qian, S. Ying, D. Yuan, S. Horike, N. Ogiwara, R. Babarao, Y. Wang, N. Yan, D. Zhao, Chem. Mater. 2016, 28, 2659.
- 44Y. Devrim, E. D. Arıca, A. Albostan, Ind. J. Hydrogen Energ. 2018, 43, 11820.
- 45S. B. I. Anthonysamy, S. B. Afandi, M. Khavarian, A. R. B. Mohamed, Beilstein J. Nanotechnol. 2018, 9, 740.
- 46E. Lam, J. H. T. Luong, ACS Catal. 2014, 4, 3393.
- 47R. Insyani, D. Verma, H. S. Cahyadi, S. M. Kim, S. K. Kim, N. Karanwal, J. Kim, Appl. Catal., B 2019, 243, 337.
- 48M. Tan, Y. Ishikuro, Y. Hosoi, N. Yamane, P. Ai, P. Zhang, G. Yang, M. Wu, R. Yang, N. Tsubaki, Chem. Eng. J. 2017, 330, 863.
- 49A. K. Dizaji, H. R. Mortaheb, B. Mokhtarani, Chem. Eng. J. 2018, 335, 362.
- 50H.-Y. Zhang, R.-H. Shi, Z.-R. Zhang, C.-H. Zhou, C. Yang, H.-L. Fan, M.-M. Wu, Eur. J. Inorg. Chem. 2018, 2018, 2768.
- 51R. Insyani, D. Verma, S. M. Kim, J. Kim, Green Chem. 2017, 19, 2482.
- 52M. Shaikh, S. K. Singh, S. Khilari, M. Sahu, K. V. S. Ranganath, Catal. Commun. 2018, 106, 64.
- 53D. Mondal, J. P. Chaudhary, M. Sharma, K. Prasad, RSC Adv. 2014, 4, 29834.
- 54M. Zhang, K. Su, H. Song, Z. Li, B. Cheng, Catal. Commun. 2015, 69, 76.
- 55W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.