Advanced Nanomaterials for Nuclear Energy and Nanotechnology
Lokendra R. Khanal
Department of Physics, University of Idaho, Moscow, ID, 83844 USA
Search for more papers by this authorJennifer A. Sundararajan
Department of Physics, University of Idaho, Moscow, ID, 83844 USA
Search for more papers by this authorCorresponding Author
You Qiang
Department of Physics, University of Idaho, Moscow, ID, 83844 USA
Search for more papers by this authorLokendra R. Khanal
Department of Physics, University of Idaho, Moscow, ID, 83844 USA
Search for more papers by this authorJennifer A. Sundararajan
Department of Physics, University of Idaho, Moscow, ID, 83844 USA
Search for more papers by this authorCorresponding Author
You Qiang
Department of Physics, University of Idaho, Moscow, ID, 83844 USA
Search for more papers by this authorAbstract
The use of the latest engineered nanomaterials in nuclear energy systems has opened doors for improving the performance and safety of nuclear power. Nuclear nanotechnology (NNT) deals with the use of engineered nanomaterials for future nuclear energy applications. Herein, the recent progress in research and benefits of using nanomaterials in different areas of nuclear energy like nuclear fuel extraction and fabrication, fission product capturing, creating robust reactor materials, radiation sensing and monitoring, and radioactive waste separation and spent nuclear fuel reprocessing are summarized. Ongoing research around the world in this field is reviewed, including experimental and computational methods.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1C. Wolfram, O. Shelef, P. Gertler, J. Econ. Perspect. 2012, 26, 119.
- 2P. A. Kharecha, J. E. Hansen, Environ. Sci. Technol. 2013, 47, 4889.
- 3D. Holm, D. Arch, in Int. Cong. Renew Energy 2006 Proc. ICORE-2006 Feb, International Solar Energy Society, Freiberg, Germany 2006, p. 8.
- 4 European Commission, Energy for The Future: Renewable Sources of Energy, com(97)599, European Commission, Brussels 1997.
- 5C. D. Ferguson, L. E. Marburger, J. D. Farmer, A. Makhijani, Nature 2010, 467, 391.
- 6Y. Guérin, G. S. Was, S. J. Zinkle, MRS Bull. 2009, 34, 10.
- 7C. D. Ferguson, Nature 2011, 471, 411.
- 8A. Markandya, P. Wilkinson, Lancet 2007, 370, 979.
- 9J. N. O'Brien, Nat. Resour. J. 1981, 21, 857.
- 10M. B. D. Nikitin, Managing the Nuclear Fuel Cycle: Policy Implications of Expanding Global Access to Nuclear Power, DIANE Publishing, USA 2009.
- 11D. R. Diercks, J. Mater. Eng. Perform. 1993, 2, 799.
- 12B. Sovacool, Explor. Prod. Oil Gas Rev. 2009, 7, 132.
- 13 US Department of Energy, Nuclear Energy Research and Development Roadmap - Report to Congress, Office of Nuclear Energy, USA 2010.
- 14 Uranium Enrichment | Enrichment of Uranzium - World Nuclear Association, 2019, https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/conversion-enrichment-and-fabrication/uranium-enrichment.aspx.
- 15H. Wu, Y. Yang, Y. C. Cao, J. Am. Chem. Soc. 2006, 128, 16522.
- 16S. Mantoura, Nat. Nanotechnol. 2006, 1, 60.
- 17Q. Wang, G.-D. Li, S. Xu, J.-X. Li, J.-S. Chen, J. Mater. Chem. 2008, 18, 1146.
- 18W.-Q. Shi, L.-Y. Yuan, Z.-J. Li, J.-H. Lan, Y.-L. Zhao, Z.-F. Chai, Radiochim. Acta 2012, 100, 727.
- 19D. F. Sava, M. A. Rodriguez, K. W. Chapman, P. J. Chupas, J. A. Greathouse, P. S. Crozier, T. M. Nenoff, J. Am. Chem. Soc. 2011, 133, 12398.
- 20K. W. Chapman, P. J. Chupas, T. M. Nenoff, J. Am. Chem. Soc. 2010, 132, 8897.
- 21G. E. Fryxell, Y. Lin, S. Fiskum, J. C. Birnbaum, H. Wu, K. Kemner, S. Kelly, Environ. Sci. Technol. 2005, 39, 1324.
- 22B. E. Johnson, P. H. Santschi, R. S. Addleman, M. Douglas, J. D. Davidson, G. E. Fryxell, J. M. Schwantes, Appl. Radiat. Isot. 2011, 69, 205.
- 23K. W. Chapman, D. F. Sava, G. J. Halder, P. J. Chupas, T. M. Nenoff, J. Am. Chem. Soc. 2011, 133, 18583.
- 24S. Ukai, M. Fujiwara, J. Nucl. Mater. 2002, 307, 749.
- 25D. T. Hoelzer, G. R. Odette, M. J. Alinger, D. S. Gelles, A. F. Rowcliffe, R. L. Klueh, B. A. Pint, P. J. Mazias, Advanced Alloy Systems, Fusion Materials Science, University of California, Santa Barbara 2001.
- 26R. L. Klueh, P. J. Maziasz, I. S. Kim, L. Heatherly, D. T. Hoelzer, N. Hashimoto, E. A. Kenik, K. Miyahara, J. Nucl. Mater. 2002, 307, 773.
- 27A. Hirata, T. Fujita, Y. R. Wen, J. H. Schneibel, C. T. Liu, M. W. Chen, Nat. Mater. 2011, 10, 922.
- 28S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, M. Fujiwara, J. Nucl. Mater. 1993, 204, 65.
- 29A. Kimura, H. Cho, N. Toda, R. Casada, H. Kishimoto, N. Iwata, S. Ukai, S. Ohtsuka, M. Fujiwara, in Proc. of Int. Congress on Advances in Nuclear Power Plants (ICAPP-06), American Nuclear Society, USA 2006, p. 2229.
- 30D. K. Mukhopadhyay, F. H. Froes, D. S. Gelles, J. Nucl. Mater. 1998, 258, 1209.
- 31R. L. Klueh, J. P. Shingledecker, R. W. Swindeman, D. T. Hoelzer, J. Nucl. Mater. 2005, 341, 103.
- 32Y. de Carlan, J.-L. Bechade, P. Dubuisson, J.-L. Seran, P. Billot, A. Bougault, T. Cozzika, S. Doriot, D. Hamon, J. Henry, J. Nucl. Mater. 2009, 386, 430.
- 33H. K. Yoon, A. Kimura, Key Engineering Materials, Vol. 345, Trans Tech Publications, Switzerland 2007, pp. 1011–1014.
- 34J. Chen, W. Hoffelner, J. Nucl. Mater. 2009, 392, 360.
- 35J. He, J. M. Schoenung, Mater. Sci. Eng. A 2002, 336, 274.
- 36B. H. Kear, L. E. McCandlish, Nanostruct. Mater. 1993, 3, 19.
- 37D. A. Konstantinidis, E. C. Aifantis, Nanostruct. Mater. 1998, 10, 1111.
- 38J. He, M. Ice, E. J. Lavernia, Metall. Mater. Trans. A 2000, 31, 555.
- 39L. Hultman, C. Mitterer, Nanostructured Coatings, Springer, New York 2006, pp. 464–510.
10.1007/978-0-387-48756-4_11 Google Scholar
- 40E. J. Lavernia, M. L. Lau, H. G. Jiang, Thermal Spray Processing of Nanocrystaline Materials, Kluwer Academic Publishers, Hingham, MA 1998.
- 41R. Birringer, in Structure of Nanostructured Materials (Eds: G. C. Hadjipanayis, R. W. Siegel), Springer Netherlands, Dordrecht 1994.
10.1007/978-94-011-1076-1_22 Google Scholar
- 42D. Mercier, B. D. Gauntt, M. Brochu, Surf. Coat. Technol. 2011, 205, 4162.
- 43A. Raveh, I. Zukerman, R. Shneck, R. Avni, I. Fried, Surf. Coat. Technol. 2007, 201, 6136.
- 44A. Fabrizi, M. Cabibbo, R. Cecchini, S. Spigarelli, C. Paternoster, M. Haidopoulo, P. V. Kiryukhantsev-Korneev, Mater. Sci. Forum 2010, 653, 1.
- 45Y. Zhang, M. Ishimaru, T. Varga, T. Oda, C. Hardiman, H. Xue, Y. Katoh, S. Shannon, W. J. Weber, Phys. Chem. Chem. Phys. 2012, 14, 13429.
- 46M. Ishimaru, Y. Zhang, S. Shannon, W. J. Weber, Appl. Phys. Lett. 2013, 103, 033104.
- 47C. Jiang, N. Swaminathan, J. Deng, D. Morgan, I. Szlufarska, Mater. Res. Lett. 2014, 2, 100.
- 48T. D. Shen, Nucl. Instrum. Methods Phys. Res. Sect., B 2008, 266, 921.
- 49I. D. Skrypnyk, V. B. Lutchyn, O. Z. Student, Mater. Sci. 1999, 35, 42.
- 50B. K. Basu, C. Elbaum, Acta Metall. 1965, 13, 1117.
10.1016/0001-6160(65)90048-9 Google Scholar
- 51R. W. Siegel, S. M. Chang, R. W. Balluffi, Acta Metall. 1980, 28, 249.
- 52W. Z. Han, M. J. Demkowicz, E. G. Fu, Y. Q. Wang, A. Misra, Acta Mater. 2012, 60, 6341.
- 53K. Lu, L. Lu, S. Suresh, Science 2009, 324, 349.
- 54L. Tan, K. Sridharan, T. R. Allen, R. K. Nanstad, D. A. McClintock, J. Nucl. Mater. 2008, 374, 270.
- 55G. S. Was, J. P. Wharry, B. Frisbie, B. D. Wirth, D. Morgan, J. D. Tucker, T. R. Allen, J. Nucl. Mater. 2011, 411, 41.
- 56C. Sun, K. Y. Yu, J. H. Lee, Y. Liu, H. Wang, L. Shao, S. A. Maloy, K. T. Hartwig, X. Zhang, J. Nucl. Mater. 2012, 420, 235.
- 57X.-M. Bai, A. F. Voter, R. G. Hoagland, M. Nastasi, B. P. Uberuaga, Science 2010, 327, 1631.
- 58I. J. Beyerlein, A. Caro, M. J. Demkowicz, N. A. Mara, A. Misra, B. P. Uberuaga, Mater. Today 2013, 16, 443.
- 59M. Rose, A. G. Balogh, H. Hahn, Nucl. Instrum. Methods Phys. Res. Sect., B 1997, 127, 119.
- 60M. J. Demkowicz, R. G. Hoagland, J. P. Hirth, Phys. Rev. Lett. 2008, 100, 136102.
- 61A. Misra, M. J. Demkowicz, X. Zhang, R. G. Hoagland, JOM J. Miner. Met. Mater. Soc. 2007, 59, 62.
- 62G. R. Odette, M. J. Alinger, B. D. Wirth, Annu. Rev. Mater. Res. 2008, 38, 471.
- 63E. M. Bringa, J. D. Monk, A. Caro, A. Misra, L. Zepeda-Ruiz, M. Duchaineau, F. Abraham, M. Nastasi, S. T. Picraux, Y. Q. Wang, Nano Lett. 2011, 12, 3351.
- 64Y. Chimi, A. Iwase, N. Ishikawa, M. Kobiyama, T. Inami, S. Okuda, J. Nucl. Mater. 2001, 297, 355.
- 65M. Samaras, P. M. Derlet, H. Van Swygenhoven, M. Victoria, Phys. Rev. Lett. 2002, 88, 125505.
- 66P. C. Millett, D. S. Aidhy, T. Desai, S. R. Phillpot, D. Wolf, Int. J. Mater. Res. 2009, 100, 550.
- 67M. A. Tschopp, K. N. Solanki, F. Gao, X. Sun, M. A. Khaleel, M. F. Horstemeyer, Phys. Rev. B 2012, 85, 064108.
- 68A. Meldrum, L. A. Boatner, R. C. Ewing, Phys. Rev. Lett. 2001, 88, 025503.
- 69F. Lu, J. Wang, M. Lang, M. Toulemonde, F. Namavar, C. Trautmann, J. Zhang, R. C. Ewing, J. Lian, Phys. Chem. Chem. Phys. 2012, 14, 12295.
- 70G. S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, Springer, New York 2016.
- 71A. D. Brailsford, R. Bullough, Philos. Trans. R. Soc., A 1981, 302, 87.
- 72J. S. McCloy, W. Jiang, T. C. Droubay, T. Varga, L. Kovarik, J. A. Sundararajan, M. Kaur, Y. Qiang, E. C. Burks, K. Liu, J. Appl. Phys. 2013, 114, 083903.
- 73J. S. McCloy, W. Jiang, J. A. Sundararajan, Y. Qiang, E. Burks, K. Liu, in AIP Conf. Proc., Vol. 1525, AIP, USA 2013, pp. 659–662.
- 74W. Jiang, J. S. McCloy, A. S. Lea, J. A. Sundararajan, Q. Yao, Y. Qiang, Phys. Rev. B 2011, 83, 134435.
- 75W. Jiang, J. A. Sundararajan, T. Varga, M. E. Bowden, Y. Qiang, J. S. McCloy, C. Henager, R. O. Montgomery, Adv. Funct. Mater. 2014, 24, 6210.
- 76J. A. Sundararajan, M. Kaur, W. Jiang, J. S. McCloy, Y. Qiang, J. Appl. Phys. 2014, 115, 17B507.
- 77J. W. Murphy, G. R. Kunnen, I. Mejia, M. A. Quevedo-Lopez, D. Allee, B. Gnade, Appl. Phys. Lett. 2012, 101, 143506.
- 78E. Tupitsyn, P. Bhattacharya, E. Rowe, L. Matei, M. Groza, B. Wiggins, A. Burger, A. Stowe, Appl. Phys. Lett. 2012, 101, 202101.
- 79Y. Qiang, J. Antony, A. Sharma, J. Nutting, D. Sikes, D. Meyer, J. Nanopart. Res. 2006, 8, 489.
- 80M. Kaur, J. S. McCloy, W. Jiang, Q. Yao, Y. Qiang, J. Phys. Chem. C 2012, 116, 12875.
- 81L. R. Khanal, T. Williams, Y. Qiang, J. Phys. Appl. Phys. 2018, 51, 255302.
- 82S. Linderoth, S. Mørup, M. D. Bentzon, J. Mater. Sci. 1995, 30, 3142.
- 83K. K. Fung, B. Qin, X. X. Zhang, Mater. Sci. Eng. A 2000, 286, 135.
- 84N. F. Mott, A. S. Alexandrov, Sir Nevill Mott â 65 Years in Physics, Vol. 12, World Scientific Publishing Company, USA, Singapore, UK 1995.
10.1142/2727 Google Scholar
- 85D. G. Park, C. G. Kim, H. C. Kim, J. H. Hong, I. S. Kim, J. Appl. Phys. 1997, 81, 4125.
- 86S. Asmontas, V. Kazlauskaite, A. Suziedelis, J. Gradauskas, E. Sirmulis, V. Derkach, In 2009 European Microwave Conf. (EuMC), IEEE, USA 2009, pp. 1650–1653.
- 87P. Esquinazi, D. Spemann, R. Höhne, A. Setzer, K.-H. Han, T. Butz, Phys. Rev. Lett. 2003, 91, 227201.
- 88S. Talapatra, P. G. Ganesan, T. Kim, R. Vajtai, M. Huang, M. Shima, G. Ramanath, D. Srivastava, S. C. Deevi, P. M. Ajayan, Phys. Rev. Lett. 2005, 95, 097201.
- 89C. D'orleans, J. P. Stoquert, C. Estournes, J. J. Grob, D. Muller, J. L. Guille, M. Richard-Plouet, C. Cerruti, F. Haas, Nucl. Instrum. Methods Phys. Res. Sect., B 2004, 216, 372.
- 90J. P. Nozieres, M. Ghidini, N. M. Dempsey, B. Gervais, D. Givord, G. Suran, J. M. D. Coey, Nucl. Instrum. Methods Phys. Res. Sect., B 1998, 146, 250.
- 91L. G. Jacobsohn, J. D. Thompson, Y. Wang, A. Misra, R. K. Schulze, M. Nastasi, Nucl. Instrum. Methods Phys. Res. Sect., B 2006, 250, 201.
- 92J. Ferré, C. Chappert, H. Bernas, J.-P. Jamet, P. Meyer, O. Kaitasov, S. Lemerle, V. Mathet, F. Rousseaux, H. Launois, J. Magn. Magn. Mater. 1999, 198, 191.
- 93P. K. Kulriya, B. R. Mehta, D. K. Avasthi, D. C. Agarwal, P. Thakur, N. B. Brookes, A. K. Chawla, R. Chandra, Appl. Phys. Lett. 2010, 96, 053103.
- 94C. Gavade, N. L. Singh, D. K. Avasthi, A. Banerjee, Nucl. Instrum. Methods Phys. Res. Sect., B 2010, 268, 3127.
- 95G. H. Jaffari, A. Ceylan, C. Ni, S. I. Shah, J. Appl. Phys. 2010, 107, 013910.
- 96A. D. Smigelskas, E. O. Kirkendall, Trans. AIME 1947, 171, 130.
- 97A. Heilmann, A. D. Müller, J. Werner, F. Müller, Thin Solid Films 1995, 270, 351.
- 98C. M. Wang, D. R. Baer, J. E. Amonette, M. H. Engelhard, J. J. Antony, Y. Qiang, Ultramicroscopy 2007, 108, 43.
- 99J. A. Sundararajan, M. Kaur, Y. Qiang, J. Phys. Chem. C 2015, 119, 8357.
- 100C. Wang, D. R. Baer, J. E. Amonette, M. H. Engelhard, J. Antony, Y. Qiang, J. Am. Chem. Soc. 2009, 131, 8824.
- 101C. M. Wang, D. R. Baer, J. E. Amonette, M. H. Engelhard, Y. Qiang, J. Antony, Nanotechnology 2007, 18, 255603.
- 102C. M. Wang, D. R. Baer, L. E. Thomas, J. E. Amonette, J. Antony, Y. Qiang, G. Duscher, J. Appl. Phys. 2005, 98, 094308.
- 103G. R. Choppin, in Overview of Chemical Separation Methods and Technologies (Eds: G. R. Choppin, M. K. Khankhasayev), Springer, Dordrecht, 1999, pp. 1–16.
- 104H. H. Anderson, L. B. Asprey, U.S. Patent 2924506, 1960.
- 105K. Kinoshita, T. Inoue, S. P. Fusselman, D. L. Grimmett, C. L. Krueger, T. S. Storvick, J. Nucl. Sci. Technol. 2003, 40, 524.
- 106T. Koyama, M. Iizuka, Y. Shoji, R. Fujita, H. Tanaka, T. Kobayashi, M. Tokiwai, J. Nucl. Sci. Technol. 1997, 34, 384.
- 107K. Uozumi, K. Kinoshita, T. Inoue, S. P. Fusselman, D. L. Grimmett, J. J. Roy, T. S. Storvick, C. L. Krueger, C. R. Nabelek, J. Nucl. Sci. Technol. 2001, 38, 36.
- 108G. R. Choppin, A. Morgenstern, J. Radioanal. Nucl. Chem. 2000, 243, 45.
- 109L. R. Avens, U. F. Gallegos, J. T. McFarlan, Sep. Sci. Technol. 1990, 25, 1967.
- 110M. W. Rosenthal, P. N. Haubenreich, R. B. Briggs, The Developement Status of Molten Salt Breeder Reactors, ORNL-4812, Oak Ridge National Laboratory, USA 1972.
- 111G. R. Choppin, J.-O. Liljenzin, J. Rydberg, Radiochemistry and Nuclear Chemistry, Butterworth-Heinemann, UK 2002.
- 112L. Nuñez, M. D. Kaminski, J. Magn. Magn. Mater. 1999, 194, 102.
- 113M. D. Kaminski, L. Nunez, Sep. Sci. Technol. 2000, 35, 2003.
- 114M. Yamaura, R. L. Camilo, M. Felinto, J. Alloys Compd. 2002, 344, 152.
- 115B. A. Buchholz, H. E. Tuazon, M. D. Kaminski, S. B. Aase, L. Nufiez, G. F. Vandegrift, Sep. Purif. Technol. 1997, 11, 211.
- 116C. Grüttner, V. Böhmer, A. Casnati, J.-F. Dozol, D. N. Reinhoudt, M. M. Reinoso-Garcia, S. Rudershausen, J. Teller, R. Ungaro, W. Verboom, J. Magn. Magn. Mater. 2005, 293, 559.
- 117H. Han, A. Johnson, J. Kaczor, M. Kaur, A. Paszczynski, Y. Qiang, J. Appl. Phys. 2010, 107, 09B520.
- 118F. M. Koehler, M. Rossier, M. Waelle, E. K. Athanassiou, L. K. Limbach, R. N. Grass, D. Günther, W. J. Stark, Chem. Commun. 2009, 32, 4862.
- 119M. Kaur, A. Johnson, G. Tian, W. Jiang, L. Rao, A. Paszczynski, Y. Qiang, Nano Energy 2013, 2, 124.
- 120A.-H. Lu, E. L. Salabas, F. Schüth, Angew. Chem., Int. Ed. 2007, 46, 1222.
- 121K. Maaz, S. Karim, A. Mumtaz, S. K. Hasanain, J. Liu, J. L. Duan, J. Magn. Magn. Mater. 2009, 321, 1838.
- 122T. Hyeon, Chem. Commun. 2003, 8, 927.
- 123P. Hollister, J. Weener, C. Román, T. Harper, Nanoparticles: Technology White Papers, Científica, São Paulo 2002.
- 124I. P. De Berti, M. V. Cagnoli, G. Pecchi, J. L. Alessandrini, S. J. Stewart, J. F. Bengoa, S. G. Marchetti, Nanotechnology 2013, 24, 175601.
- 125D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, A. P. Alivisatos, J. Phys. Chem. B 2001, 105, 8861.
- 126W. Tan, K. Wang, X. He, X. J. Zhao, T. Drake, L. Wang, R. P. Bagwe, Med. Res. Rev. 2004, 24, 621.
- 127E. Sutter, P. Sutter, Adv. Mater. 2006, 18, 2583.
- 128J. Geng, D. A. Jefferson, B. F. Johnson, Chem. Commun. 2004, 2442.
- 129R. N. Grass, E. K. Athanassiou, W. J. Stark, Angew. Chem., Int. Ed. 2007, 46, 4909.
- 130R. M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, John Wiley & Sons, Weinheim 2003.
10.1002/3527602097 Google Scholar
- 131J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Chem. Rev. 2005, 105, 1103.
- 132T. Yaita, A. W. Herlinger, P. Thiyagarajan, M. P. Jensen, Solvent Extr. Ion Exch. 2004, 22, 553.
- 133V. Chavan, V. Thekkethil, A. K. Pandey, M. Iqbal, J. Huskens, S. S. Meena, A. Goswami, W. Verboom, React. Funct. Polym. 2014, 74, 52.
- 134V. Chavan, S. Patra, A. K. Pandey, V. Thekkethil, M. Iqbal, J. Huskens, D. Sen, S. Mazumder, A. Goswami, W. Verboom, J. Phys. Chem. B 2015, 119, 212.
- 135S. Ojha, S. Chappa, A. M. Mhatre, K. K. Singh, V. Chavan, A. K. Pandey, J. Radioanal. Nucl. Chem. 2017, 312, 675.
- 136S. A. Ansari, P. Pathak, P. K. Mohapatra, V. K. Manchanda, Chem. Rev. 2012, 112, 1751.
- 137M. P. Jensen, T. Yaita, R. Chiarizia, Langmuir 2007, 23, 4765.
- 138S. Nave, G. Modolo, C. Madic, F. Testard, Solvent Extr. Ion Exch. 2004, 22, 527.
- 139P. N. Pathak, S. A. Ansari, P. K. Mohapatra, V. K. Manchanda, A. K. Patra, V. K. Aswal, J. Colloid Interface Sci. 2013, 393, 347.
- 140S. A. Ansari, P. N. Pathak, V. K. Manchanda, M. Husain, A. K. Prasad, V. S. Parmar, Solvent Extr. Ion Exch. 2005, 23, 463.
- 141M. Iqbal, P. K. Mohapatra, S. A. Ansari, J. Huskens, W. Verboom, Tetrahedron 2012, 68, 7840.
- 142M. T. Murillo, A. G. Espartero, J. Sánchez-Quesada, J. de Mendoza, P. Prados, Solvent Extr. Ion Exch. 2009, 27, 107.
- 143B. Qiao, T. Demars, M. Olvera de la Cruz, R. J. Ellis, J. Phys. Chem. Lett. 2014, 5, 1440.
- 144S. Iijima, Nature 1991, 354, 56.
- 145Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Prog. Polym. Sci. 2010, 35, 357.
- 146K. S. Coleman, S. R. Bailey, S. Fogden, M. L. Green, J. Am. Chem. Soc. 2003, 125, 8722.
- 147A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, Appl. Phys. Mater. Sci. Process. 1998, 67, 29.
- 148X. Wang, C. Chen, W. Hu, A. Ding, D. Xu, X. Zhou, Environ. Sci. Technol. 2005, 39, 2856.
- 149C. L. Chen, X. L. Li, X. K. Wang, Radiochim. Acta 2007, 95, 261.
- 150X. L. Tan, D. Xu, C. L. Chen, X. K. Wang, W. P. Hu, Radiochim. Acta 2008, 96, 23.
- 151E. Zakharchenko, O. Mokhodoeva, D. Malikov, N. Molochnikova, Y. Kulyako, G. Myasoedova, Procedia Chem. 2012, 7, 268.
- 152H. Darmstadt, C. Roy, S. Kaliaguine, T.-W. Kim, R. Ryoo, Chem. Mater. 2003, 15, 3300.
- 153M. Thirumavalavan, Y.-T. Wang, L.-C. Lin, J.-F. Lee, J. Phys. Chem. C 2011, 115, 8165.
- 154Y. Lin, S. K. Fiskum, W. Yantasee, H. Wu, S. V. Mattigod, E. Vorpagel, G. E. Fryxell, K. N. Raymond, J. Xu, Environ. Sci. Technol. 2005, 39, 1332.
- 155L.-Y. Yuan, Y.-L. Liu, W.-Q. Shi, Y.-L. Lv, J.-H. Lan, Y.-L. Zhao, Z.-F. Chai, Dalton Trans. 2011, 40, 7446.
- 156G. Tian, J. Geng, Y. Jin, C. Wang, S. Li, Z. Chen, H. Wang, Y. Zhao, S. Li, J. Hazard. Mater. 2011, 190, 442.
- 157T. Parsons-Moss, H. Tüysüz, D. Wang, S. Jones, D. Olive, H. Nitsche, Radiochim. Acta 2014, 102, 489.
- 158T. Parsons-Moss, J. Wang, S. Jones, E. May, D. Olive, Z. Dai, M. Zavarin, A. B. Kersting, D. Zhao, H. Nitsche, J. Mater. Chem. A 2014, 2, 11209.
- 159S. Yang, J. Qian, L. Kuang, D. Hua, ACS Appl. Mater. Interfaces 2017, 9, 29337.
- 160J. Qian, S. Zhang, Y. Zhou, P. Dong, D. Hua, RSC Adv. 2015, 5, 4153.
- 161G. Zhao, T. Wen, X. Yang, S. Yang, J. Liao, J. Hu, D. Shao, X. Wang, Dalton Trans. 2012, 41, 6182.
- 162P. Zong, S. Wang, Y. Zhao, H. Wang, H. Pan, C. He, Chem. Eng. J. 2013, 220, 45.
- 163X. Min, W. Yang, Y.-F. Hui, C.-Y. Gao, S. Dang, Z.-M. Sun, Chem. Commun. 2017, 53, 4199.
- 164D. Yuan, S. Zhang, Z. Xiang, Y. Liu, Y. Wang, X. Zhou, Y. He, W. Huang, Q. Zhang, ACS Sustainable Chem. Eng. 2018, 6, 9619.