Improved Performance and Immobilizing Mechanism of N-doping Carbon Aerogel with Net Channel via Long-Chain Directing for Lithium–Sulfur Battery
Yizhen Shu
Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009 P. R. China
Search for more papers by this authorCorresponding Author
Xueliang Li
Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009 P. R. China
Search for more papers by this authorJinjin Ye
Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009 P. R. China
Search for more papers by this authorWei Gao
Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009 P. R. China
Search for more papers by this authorSheng Cheng
Anhui Province Key Laboratory of Advance Functional Materials and Devices, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009 P. R. China
Search for more papers by this authorXingchi Zhang
Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009 P. R. China
Search for more papers by this authorLi Ma
Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009 P. R. China
Search for more papers by this authorCorresponding Author
Yunsheng Ding
Anhui Province Key Laboratory of Advance Functional Materials and Devices, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009 P. R. China
Search for more papers by this authorYizhen Shu
Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009 P. R. China
Search for more papers by this authorCorresponding Author
Xueliang Li
Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009 P. R. China
Search for more papers by this authorJinjin Ye
Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009 P. R. China
Search for more papers by this authorWei Gao
Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009 P. R. China
Search for more papers by this authorSheng Cheng
Anhui Province Key Laboratory of Advance Functional Materials and Devices, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009 P. R. China
Search for more papers by this authorXingchi Zhang
Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009 P. R. China
Search for more papers by this authorLi Ma
Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009 P. R. China
Search for more papers by this authorCorresponding Author
Yunsheng Ding
Anhui Province Key Laboratory of Advance Functional Materials and Devices, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009 P. R. China
Search for more papers by this authorAbstract
A novel net channel and N-doping carbon aerogel (CA) are successfully prepared by an in situ and facile method via polyimide (PI) inducting for lithium–sulfur (Li–S) batteries. The PI-directing carbon aerogel (PI-CA) presents a cross-linked framework, abundant porosity, and a high specific surface area. PI-CA spheres present effective immobilizing polysulfides and high loading sulfur for a Brunauer–Emmett–Teller (BET) surface area of 2039.4 m2 g−1 and N-doping via physical and chemical adsorption. The Li–S batteries with PI-CA as cathode matrix exhibit excellent performance. In particular, the initial specific capacity of 2PI-CA/S with sulfur content of 73.8 wt% delivers 1338 mAh g−1 and remains at 1102 mAh g−1 after 100 cycles at 0.2 C. The enhanced electrochemical performance mainly benefits from the mesh structure of the composite and the interaction between nitrogen and lithium polysulfide. The theoretical calculation by density functional theory (DFT) further supports the template effect of PI and the anchoring mechanism of polysulfides.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1W. Yang, H. Zhao, L. Chen, C. Fang, Z. Rui, L. Yang, H. Wan, J. Liu, Y. Zhou, P. Wang, Z. Zou, Chem. Eng. J. 2017, 326, 1040.
- 2P. Bonnick, E. Nagai, J. Muldoon, J. Electrochem. Soc. 2017, 165, A6005.
- 3X.-B. Cheng, J.-Q. Huang, Q. Zhang, J. Electrochem. Soc. 2017, 165, A6058.
- 4S. Li, H. Li, G. Zhu, B. Jin, H. Liu, Q. Jiang, Appl. Surf. Sci. 2019, 479, 265.
- 5H. J. Peng, J. Q. Huang, Q. Zhang, Chem. Soc. Rev. 2017, 46, 5237.
- 6J. He, Y. Chen, A. Manthiram, iScience 2018, 4, 36.
- 7X. Song, M. Zhang, M. Yao, C. Hao, J. Qiu, ACS Appl. Mater. Interfaces 2018, 10, 43896.
- 8J. Jiang, W. Wang, C. Wang, L. Zhang, K. Tang, J. Zuo, Q. Yang, Electrochim. Acta 2015, 170, 140.
- 9W. Li, B. Song, A. Manthiram, Chem. Soc. Rev. 2017, 46, 3006.
- 10T. Zhao, P. Zhai, Z. Yang, J. Wang, L. Qu, F. Du, J. Wang, Nanoscale 2018, 10, 22954.
- 11R.-S. Song, B. Wang, T.-T. Ruan, L. Wang, H. Luo, F. Wang, T.-T. Gao, D.-L. Wang, Appl. Surf. Sci. 2018, 427, 396.
- 12S. Mukherjee, L. Kavalsky, K. Chattopadhyay, C. V. Singh, Nanoscale 2018, 10, 21335.
- 13J. Zhu, R. Pitcheri, T. Kang, C. Jiao, Y. Guo, J. Li, Y. Qiu, J. Electroanal. Chem. 2019, 833, 151.
- 14G. Xu, A. Kushima, J. Yuan, H. Dou, W. Xue, X. Zhang, X. Yan, J. Li, Energy Environ. Sci. 2017, 10, 2544.
- 15H. Liu, H. Shen, R. Li, S. Liu, A. Turak, M. Yang, ChemElectroChem 2019, 6, 2074.
- 16J. Yu, X. Li, Y. Shu, L. Ma, X. Zhang, Y. Ding, Electrochim. Acta 2019, 293, 458.
- 17Y. Yang, F. Men, Z. Song, Y. Zhou, H. Zhan, Electrochim. Acta 2017, 256, 37.
- 18Y. Guan, A. Wang, S. Liu, Q. Li, W. Wang, Y. Huang, J. Alloys Compd. 2018, 765, 544.
- 19a) C. Wang, Y. Qian, J. Yang, S. Xing, X. Ding, Q. Yang, RSC Adv. 2017, 7, 26120; b) J. Song, T. Xu, M. L. Gordin, P. Zhu, D. Lv, Y.-B. Jiang, Y. Chen, Y. Duan, D. Wang, Adv. Funct. Mater. 2014, 24, 1243.
- 20G. Zhou, L. Li, C. Ma, S. Wang, Y. Shi, N. Koratkar, W. Ren, F. Li, H.-M. Cheng, Nano Energy 2015, 11, 356.
- 21H. Li, J. Wang, Y. Zhao, S. Yang, Y. Tian, Y. Wang, ChemElectroChem 2019, 6, 3454.
- 22J. L. Gómez-Urbano, J. L. Gómez-Cámer, C. Botas, T. Rojo, D. Carriazo, J. Power Sources 2019, 412, 408.
- 23J. Ren, L. Xia, Y. Zhou, Q. Zheng, J. Liao, D. Lin, Carbon 2018, 140, 30.
- 24X. Li, Y. Wang, C. Xu, L. Pan, J. Solid State Electrochem. 2016, 21, 1101.
- 25R. Singhal, S.-H. Chung, A. Manthiram, V. Kalra, J. Mater. Chem. A 2015, 3, 4530.
- 26S.-Z. Niu, S.-D. Wu, W. Lu, Q.-H. Yang, F.-Y. Kang, New Carbon Mater. 2017, 32, 289.
- 27W. He, X. He, M. Du, S. Bie, J. Liu, Y. Wang, M. Liu, Z. Zou, W. Yan, H. Zhao, J. Phys. Chem. C 2019, 123, 15924.
- 28H. Gu, R. Zhang, P. Wang, S. Xie, C. Niu, H. Wang, J. Colloid Interface Sci. 2019, 533, 445.
- 29S. Zhang, W. Xiao, Y. Zhang, K. Liu, X. Zhang, J. Zhao, Z. Wang, P. Zhang, G. Shao, J. Mater. Chem. A 2018, 6, 22555.
- 30X. Li, Z. Ding, L. Zhang, R. Tang, Y. He, Electrochim. Acta 2017, 241, 197.
- 31X. Li, Z. Pan, Z. Li, Y. Zhong, X. Wang, M. Xu, Y. Liao, L. Xing, Y. Qiu, W. Li, Ionics 2018, 25, 503.
- 32L. Xia, Z. Song, L. Zhou, D. Lin, Q. Zheng, J. Solid State Chem. 2019, 270, 500.
- 33H. Zhang, Z. Zhao, Y. Liu, J. Liang, Y. Hou, Z. Zhang, X. Wang, J. Qiu, J. Energy Chem. 2017, 26, 1282.
- 34Q. Zhu, H. Deng, Q. Su, G. Du, Y. Yu, S. Ma, B. Xu, Electrochim. Acta 2019, 293, 19.
- 35L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, J. Liu, Adv. Mater. 2012, 24, 1176.
- 36a) W. Ai, W. Zhou, Z. Du, Y. Chen, Z. Sun, C. Wu, C. Zou, C. Li, W. Huang, T. Yu, Energy Storage Mater. 2017, 6, 112; b) Q. Zhao, K. Zhao, G. Ji, X. Guo, M. Han, J. Wen, Z. Ren, S. Zhao, Z. Gao, R. Wang, M. Li, K. Sun, N. Hu, C. Xu, Chem. Eng. J. 2019, 361, 1043.
- 37X. Li, R. Tang, K. Hu, L. Zhang, Z. Ding, Electrochim. Acta 2016, 210, 734.
- 38K. C. Wasalathilake, M. Roknuzzaman, K. Ostrikov, G. A. Ayoko, C. Yan, RSC Adv. 2018, 8, 2271.
- 39H. R. Jiang, W. Shyy, M. Liu, Y. X. Ren, T. S. Zhao, J. Mater. Chem. A 2018, 6, 2107.
- 40P. Zhang, X. Li, Y. Hua, J. Yu, Y. Ding, Electrochim. Acta 2018, 282, 499.
- 41G. S. Yi, E. S. Sim, Y. C. Chung, Phys. Chem. Chem. Phys. 2017, 19, 28189.