Microporous Solids En Route to Heterogeneous Electrocatalysis: The Oxygen Reduction Reaction
Rana R. Haikal
Center for Materials Science, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578 Egypt
Search for more papers by this authorMohamed H. Hassan
Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, NY, 13699-5810 USA
Search for more papers by this authorCorresponding Author
Mohamed H. Alkordi
Center for Materials Science, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578 Egypt
Search for more papers by this authorRana R. Haikal
Center for Materials Science, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578 Egypt
Search for more papers by this authorMohamed H. Hassan
Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, NY, 13699-5810 USA
Search for more papers by this authorCorresponding Author
Mohamed H. Alkordi
Center for Materials Science, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578 Egypt
Search for more papers by this authorAbstract
The recent progress and challenges in developing highly active microporous materials as heterogeneous electrocatalysts for oxygen reduction reaction (ORR) are discussed. Due to the slow kinetics of ORR, the search for novel highly stable catalysts that can outperform Pt-based ones is a growing demand. Functional microporous materials and exceptional chemical stability are of great interest due to their unique catalytic properties. The crucial rule of porosity and catalyst design strategies are thoroughly discussed with emphasis on the influence of the degree of microporosity on the material's intrinsic catalytic activity and the current best practice for catalyst testing and activity reporting. This Review focuses on microporous materials, which are classified into crystalline as metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), or amorphous porous–organic polymers (POPs) as to their recent utilization in constructing efficient ORR electrocatalysts. The fundamental challenges in obtaining stable catalysts with appreciable kinetics from non-noble metal ions, and ways to form them utilizing microporous solids as catalyst matrices, are reviewed. The fundamental criteria for future generation ORR catalysts based on microporous solids, including stability in acidic medium, high electrical conductivity, and accessibility of the active sites within the matrix are highlighted for guidance to future works.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. Pijpers, D. G. Nocera, Science 2011, 334, 645.
- 2H. B. Gray, Nat. Chem. 2009, 1, 7.
- 3N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729.
- 4Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, X. C. Adroher, Appl. Energy 2011, 88, 981.
- 5X. Zhang, X.-G. Wang, Z. Xie, Z. Zhou, Green Energy Environ. 2016, 1, 4.
- 6C. Zhang, X. Shen, Y. Pan, Z. Peng, Front. Energy 2017, 11, 268.
- 7R. G. AbdulHalim, A. Shkurenko, M. H. Alkordi, M. Eddaoudi, Cryst. Growth Des. 2016, 16, 722.
- 8S. Sui, X. Wang, X. Zhou, Y. Su, S. Riffat, C.-j. Liu, J. Mater. Chem. A 2017, 5, 1808.
- 9A. Morozan, B. Jousselme, S. Palacin, Energy Environ. Sci. 2011, 4, 1238.
- 10Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev. 2015, 44, 2168.
- 11C. R. Raj, A. Samanta, S. H. Noh, S. Mondal, T. Okajima, T. Ohsaka, J. Mater. Chem. A 2016, 4, 11156.
- 12L. Dai, Y. Xue, L. Qu, H.-J. Choi, J.-B. Baek, Chem. Rev. 2015, 115, 4823.
- 13H. Han, Y. Noh, Y. Kim, W. S. Jung, S. Park, W. B. Kim, Nanoscale 2019, 11, 2423.
- 14M. Zhou, H.-L. Wang, S. Guo, Chem. Soc. Rev. 2016, 45, 1273.
- 15H. Wang, J. Wang, Q. Zhong, G. Zhang, Y. Bu, Energy Technol. 2017, 5, 283.
- 16Z. Liu, J. Xue, H. Yu, Y. Xu, L. Feng, Energy Technol. 2018, 6, 2394.
- 17Y. Zhang, D. Hu, C. Xue, H. Yang, X. Wang, T. Wu, Dalton Trans. 2018, 47, 3227.
- 18K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760.
- 19Z. Zhu, Y. Yang, Y. Guan, J. Xue, L. Cui, J. Mater. Chem. A 2016, 4, 15536.
- 20R. Luebke, Y. Belmabkhout, Ł. J. Weseliński, A. J. Cairns, M. Alkordi, G. Norton, Ł. Wojtas, K. Adil, M. Eddaoudi, Chem. Sci. 2015, 6, 4095.
- 21O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705.
- 22A. Corma, H. García, F. X. Llabrés i Xamena, Chem. Rev. 2010, 110, 4606.
- 23V. Mouarrawis, R. Plessius, J. I. van der Vlugt, J. N. H. Reek, Front. Chem. 2018, 6, 623.
- 24B. Kumar Kundu, V. Chhabra, N. Malviya, R. Ganguly, G. S. Mishra, S. Mukhopadhyay, Microporous Mesoporous Mater. 2018, 271, 100.
- 25Q. Sun, Z. Dai, X. Meng, L. Wang, F.-S. Xiao, ACS Catal. 2015, 5, 4556.
- 26C. Hua, B. Chan, A. Rawal, F. Tuna, D. Collison, J. M. Hook, D. M. D'Alessandro, J. Mater. Chem. C 2016, 4, 2535.
- 27M. Jahan, Q. Bao, K. P. Loh, J. Am. Chem. Soc. 2012, 134, 6707.
- 28L. Sun, M. G. Campbell, M. Dincă, Angew. Chem. Int. Ed. 2016, 55, 3566.
- 29Y. Shen, Z. Li, L. Wang, Y. Ye, Q. Liu, X. Ma, Q. Chen, Z. Zhang, S. Xiang, J. Mater. Chem. A 2015, 3, 593.
- 30Y. Ye, L. Zhang, Q. Peng, G.-E. Wang, Y. Shen, Z. Li, L. Wang, X. Ma, Q.-H. Chen, Z. Zhang, S. Xiang, J. Am. Chem. Soc. 2015, 137, 913.
- 31A. B. Soliman, R. R. Haikal, Y. S. Hassan, M. H. Alkordi, Chem. Commun. 2016, 52, 12032.
- 32F. Xu, S. Jin, H. Zhong, D. Wu, X. Yang, X. Chen, H. Wei, R. Fu, D. Jiang, Sci. Rep. 2015, 5, 8225.
- 33X. Zhuang, F. Zhang, D. Wu, N. Forler, H. Liang, M. Wagner, D. Gehrig, M. R. Hansen, F. Laquai, X. Feng, Angew. Chem. Int. Ed. 2013, 52, 9668.
- 34X. Zhuang, D. Gehrig, N. Forler, H. Liang, M. Wagner, M. R. Hansen, F. Laquai, F. Zhang, X. Feng, Adv. Mater. 2015, 27, 3789.
- 35S. Duhović, M. Dincă, Chem. Mater. 2015, 27, 5487.
- 36K. Yuan, P. Guo-Wang, T. Hu, L. Shi, R. Zeng, M. Forster, T. Pichler, Y. Chen, U. Scherf, Chem. Mater. 2015, 27, 7403.
- 37P. Wang, Q. Wu, L. Han, S. Wang, S. Fang, Z. Zhang, S. Sun, RSC Adv. 2015, 5, 27290.
- 38W. Zhao, Z. Hou, Z. Yao, X. Zhuang, F. Zhang, X. Feng, Polym. Chem. 2015, 6, 7171.
- 39O. M. Yaghi, M. O'Keeffe, M. Kanatzidis, J. Solid State Chem. 2000, 152, 1.
- 40O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705.
- 41K. Shen, X. Chen, J. Chen, Y. Li, ACS Catal. 2016, 6, 5887.
- 42P. Kaur, J. T. Hupp, S. T. Nguyen, ACS Catal. 2011, 1, 819.
- 43M. H. Alkordi, Ł. J. Weseliński, V. D'Elia, S. Barman, A. Cadiau, M. N. Hedhili, A. J. Cairns, R. G. AbdulHalim, J.-M. Basset, M. Eddaoudi, J. Mater. Chem. A 2016, 4, 7453.
- 44A. B. Soliman, R. R. Haikal, A. A. Abugable, M. H. Alkordi, J. Mater. Chem. A 2017, 5, 1957.
- 45R. R. Haikal, A. M. Elmansi, A. B. Soliman, P. Aly, Y. S. Hassan, M. R. Berber, I. H. Hafez, A. Hassanien, M. H. Alkordi, RSC Adv. 2016, 6, 94547.
- 46Y. He, Q. Liu, J. Hu, C. Zhao, C. Peng, Q. Yang, H. Wang, H. Liu, Sep. Purif. Technol. 2017, 180, 142.
- 47P. M. Usov, B. Huffman, C. C. Epley, M. C. Kessinger, J. Zhu, W. A. Maza, A. J. Morris, ACS Appl, Mater. Interfaces, 2017, 9, 33539.
- 48R. R. Haikal, C. Hua, J. J. Perry, D. O'Nolan, I. Syed, A. Kumar, A. H. Chester, M. J. Zaworotko, M. H. Yacoub, M. H. Alkordi, ACS Appl. Mater. Interfaces 2017, 9, 43520.
- 49S. Ma, G. Goenaga, A. Call, D. Liu, Chem. Eur. J. 2011, 17, 2063.
- 50F. Afsahi, S. Kaliaguine, J. Mater. Chemistry A 2014, 2, 12270.
- 51Q. Lin, X. Bu, A. Kong, C. Mao, X. Zhao, F. Bu, P. Feng, J. Am. Chem. Soc. 2015, 137, 2235.
- 52C. Mao, A. Kong, Y. Wang, X. Bu, P. Feng, Nanoscale 2015, 7, 10817.
- 53S. Zhao, H. Yin, L. Du, L. He, K. Zhao, L. Chang, G. Yin, H. Zhao, S. Liu, Z. Tang, ACS Nano 2014, 8, 12660.
- 54A. Kong, C. Mao, Q. Lin, X. Wei, X. Bu, P. Feng, Dalton Trans. 2015, 44, 6748.
- 55X. Wang, J. Zhou, H. Fu, W. Li, X. Fan, G. Xin, J. Zheng, X. Li, J. Mater. Chem. A 2014, 2, 14064.
- 56W. Xia, J. Zhu, W. Guo, L. An, D. Xia, R. Zou, J. Mater. Chem. A 2014, 2, 11606.
- 57B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou, X. Wang, Nat. Energy 2016, 1, 15006.
- 58W. Chaikittisilp, N. L. Torad, C. Li, M. Imura, N. Suzuki, S. Ishihara, K. Ariga, Y. Yamauchi, Chemistry 2014, 20, 4217.
- 59A. Aijaz, J. Masa, C. Rösler, W. Xia, P. Weide, A. J. R. Botz, R. A. Fischer, W. Schuhmann, M. Muhler, Angew. Chem. Int. Ed. 2016, 55, 4087.
- 60A. Kong, Q. Lin, C. Mao, X. Bu, P. Feng, Chem. Commun. 2014, 50, 15619.
- 61B. Li, Y. Zhang, D. Ma, Z. Xing, T. Ma, Z. Shi, X. Ji, S. Ma, Chem. Sci. 2016, 7, 2138.
- 62A. Aijaz, N. Fujiwara, Q. Xu, J. Am. Chem. Soc. 2014, 136, 6790.
- 63D. Y. Chung, K. J. Lee, S.-H. Yu, M. Kim, S. Y. Lee, O.-H. Kim, H.-J. Park, Y.-E. Sung, Adv. Energy Mater. 2015, 5, 1401309.
- 64P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun, D. Cao, Energy Environ. Sci. 2014, 7, 442.
- 65J.-S. Li, S.-L. Li, Y.-J. Tang, M. Han, Z.-H. Dai, J.-C. Bao, Y.-Q. Lan, Chem. Commun. 2015, 51, 2710.
- 66L. Zhang, X. Wang, R. Wang, M. Hong, Chem. Mater. 2015, 27, 7610.
- 67J. Wei, Y. Hu, Z. Wu, Y. Liang, S. Leong, B. Kong, X. Zhang, D. Zhao, G. P. Simon, H. Wang, J. Mater. Chem. A 2015, 3, 16867.
- 68B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou, X. Wang, Nat. Energy 2016, 1, 15006.
- 69T. Palaniselvam, B. P. Biswal, R. Banerjee, S. Kurungot, Chemistry 2013, 19, 9335.
- 70F. Jaouen, M. T. Sougrati, A. Morozan, V. Goellner, D. Jones, L. Stievano, Electrochim. Acta 2014, 119, 192.
- 71Y. Deng, Y. Dong, G. Wang, K. Sun, X. Shi, L. Zheng, X. Li, S. Liao, ACS Appl. Mater. Interfaces 2017, 9, 9699.
- 72Y. Wu, S. Zhao, K. Zhao, T. Tu, J. Zheng, J. Chen, H. Zhou, D. Chen, S. Li, J. Power Sources 2016, 311, 137.
- 73P. Su, H. Xiao, J. Zhao, Y. Yao, Z. Shao, C. Li, Q. Yang, Chem. Sci. 2013, 4, 2941.
- 74H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos, L. Luo, Z. Qiao, X. Xie, C. Wang, D. Su, Y. Shao, G. Wu, J. Am. Chem. Soc. 2017, 139, 14143.
- 75Y.-Z. Chen, C. Wang, Z.-Y. Wu, Y. Xiong, Q. Xu, S.-H. Yu, H.-L. Jiang, Adv. Mater. 2015, 27, 5010.
- 76B. You, N. Jiang, M. Sheng, W. S. Drisdell, J. Yano, Y. Sun, ACS Catal. 2015, 5, 7068.
- 77D. Zhao, J.-L. Shui, C. Chen, X. Chen, B. M. Reprogle, D. Wang, D.-J. Liu, Chem. Sci. 2012, 3, 3200.
- 78L. Shang, H. Yu, X. Huang, T. Bian, R. Shi, Y. Zhao, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Adv. Mater. 2016, 28, 1668.
- 79Z. Li, M. Shao, L. Zgou, R. Zhang, C. Zhang, M. Wei, D. Evans, X. Duan, Adv. Mater. 2016, 28, 2337.
- 80M. L. Rigsby, D. J. Wasylenko, M. L. Pegis, J. M. Mayer, J. Am. Chem. Soc. 2015, 137, 4296.
- 81M. Jiang, L. Li, D. Zhu, H. Zhang, X. Zhao, J. Mater. Chem. A 2014, 2, 5323.
- 82Y. Hou, Z. Wen, S. Cui, S. Ci, S. Mao, J. Chen, Adv. Funct. Mater. 2015, 25, 872.
- 83Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui, J. Chen, Adv. Energy Mater. 2014, 4, 1400337.
- 84M. Jahan, Z. Liu, K. P. Loh, Adv. Funct. Mater. 2013, 23, 5363.
- 85H.-X. Zhong, J. Wang, Y.-W. Zhang, W.-l. Xu, W. Xing, D. Xu, Y.-f. Zhang, X.-b. Zhang, Angew. Chem. Int. Ed. 2014, 53, 14235.
- 86X. Li, Y. Fang, X. Lin, M. Tian, X. An, Y. Fu, R. Li, J. Jin, J. Ma, J. Mater. Chem. A 2015, 3, 17392.
- 87J. Shui, C. Chen, L. Grabstanowicz, D. Zhao, D.-J. Liu, Proc. Natl. Acad. Sci. 2015, 112, 10629.
- 88W. Yang, X. Liu, L. Chen, L. Liang, J. Jia, Chem. Commun. 2017, 53, 4034.
- 89E. M. Miner, T. Fukushima, D. Sheberla, L. Sun, Y. Surendranath, M. Dincă, Nat. Commun. 2016, 7, 10942.
- 90J.-X. Jiang, A. I. Cooper, Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis (Ed: M. Schröder), Springer Berlin Heidelberg, Berlin, Heidelberg 2010, pp. 1–33.
- 91R. W. Tilford, W. R. Gemmill, H.-C. Zur Loye, J. J. Lavigne, Chem. Mater. 2006, 18, 5296.
- 92H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortés, A. P. Côté, R. E. Taylor, M. O'Keeffe, O. M. Yaghi, Science 2007, 316, 268.
- 93A. P. Cote, H. M. El-Kaderi, H. Furukawa, J. R. Hunt, O. M. Yaghi, J. Am. Chem. Soc. 2007, 129, 12914.
- 94J. R. Hunt, C. J. Doonan, J. D. LeVangie, A. P. Côté, O. M. Yaghi, J. Am. Chem. Soc. 2008, 130, 11872.
- 95N. A. Zwaneveld, R. Pawlak, M. Abel, D. Catalin, D. Gigmes, D. Bertin, L. Porte, J. Am. Chem. Soc. 2008, 130, 6678.
- 96A. Kong, Y. Zhang, Z. Chen, A. Chen, C. Li, H. Wang, Y. Shan, Carbon 2017, 116, 606.
- 97Q. Zuo, P. Zhao, W. Luo, G. Cheng, Nanoscale 2016, 8, 14271.
- 98Q. Zuo, G. Cheng, W. Luo, Dalton Trans. 2017, 46, 9344.
- 99P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 2008, 47, 3450.
- 100E. L. Spitler, W. R. Dichtel, Nat. Chem. 2010, 2, 672.
- 101N. L. Campbell, R. Clowes, L. K. Ritchie, A. I. Cooper, Chem. Mater. 2009, 21, 204.
- 102M. H. Alkordi, R. R. Haikal, Y. S. Hassan, A.-H. Emwas, Y. Belmabkhout, J. Mater. Chem. A 2015, 3, 22584.
- 103D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Chem. Rev. 2012, 112, 3959.
- 104G. Lu, Y. Zhu, K. Xu, Y. Jin, Z. J. Ren, Z. Liu, W. Zhang, Nanoscale 2015, 7, 18271.
- 105A. B. Soliman, R. R. Haikal, A. A. Abugable, M. H. Hassan, S. G. Karakalos, P. J. Pellechia, H. H. Hassan, M. H. Yacoub, M. H. Alkordi, ACS Appl. Mater. Interfaces 2017, 9, 27918.
- 106M. E. Bhosale, R. Illathvalappil, S. Kurungot, K. Krishnamoorthy, Chem. Commun. 2016, 52, 316.
- 107G. Lu, H. Yang, Y. Zhu, T. Huggins, Z. J. Ren, Z. Liu, W. Zhang, J. Mater. Chem. A 2015, 3, 4954.
- 108H. Jia, Z. Sun, D. Jiang, S. Yang, P. Du, Inorg. Chem. Front. 2016, 3, 821.
- 109X. Zhuang, D. Gehrig, N. Forler, H. Liang, M. Wagner, M. R. Hansen, F. Laquai, F. Zhang, X. Feng, Adv. Mater. 2015, 27, 3789.
- 110K. Yuan, X. Zhuang, H. Fu, G. Brunklaus, M. Forster, Y. Chen, X. Feng, U. Scherf, Angew. Chem. Int. Ed. 2016, 55, 6858.
- 111K. Shinozaki, J. W. Zack, S. Pylypenko, B. S. Pivovar, S. S. Kocha, J. Electrochem. Soc. 2015, 162, F1384.
- 112S. S. Kocha, K. Shinozaki, J. W. Zack, D. J. Myers, N. N. Kariuki, T. Nowicki, V. Stamenkovic, Y. Kang, D. Li, D. Papageorgopoulos, Electrocatalysis 2017, 8, 366.
- 113C. R. Cox, J. Z. Lee, D. G. Nocera, T. Buonassisi, Proc. Natl. Acad. Sci. 2014, 111, 14057.
- 114M. H. Alkordi, Y. Belmabkhout, A. Cairns, M. Eddaoudi, IUCr J. 2017, 4, 131.
- 115H. Yang, H. Taizhong, W. Zhenhai, M. Shun, C. Shumao, C. Junhong, Adv. Energy Mater. 2014, 4, 1400337.
- 116J. Maryam, L. Zhaolin, L. K. Ping, Adv. Funct. Mater. 2013, 23, 5363.
- 117H. X. Zhong, J. Wang, Y. W. Zhang, W. L. Xu, W. Xing, D. Xu, Y. F. Zhang, X. B. Zhang, Angewa. Chem. 2014, 53, 14235.
- 118K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy, W. Liang, M.-T. Sougrati, F. Jaouen, S. Mukerjee, Nat. Commun. 2015, 6, 7343.
- 119Z. Xiaodong, G. Dominik, F. Nina, L. Haiwei, W. Manfred, H. M. Ryan, L. Frédéric, Z. Fan, F. Xinliang, Adv. Mater. 2015, 27, 3789.
- 120Z. Xiaodong, Z. Fan, W. Dongqing, F. Nina, L. Haiwei, W. Manfred, G. Dominik, H. M. Ryan, L. Frédéric, F. Xinliang, Angew. Chem. Int. Ed. 2013, 52, 9668.
- 121Y. Kai, Z. Xiaodong, F. Haiyan, B. Gunther, F. Michael, C. Yiwang, F. Xinliang, S. Ullrich, Angew. Chem. Int. Ed. 2016, 55, 6858.
- 122J. Xiaofang, G. Wenling, Z. Shan, W. Erkang, ChemElectroChem 2017, 4, 2005.
- 123Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. Lin, Y. Liu, T. F. Jaramillo, J. K. Nørskov, Y. Cui, Nat. Catal. 2018, 1, 156.
- 124R. Frydendal, E. A. Paoli, B. P. Knudsen, B. Wickman, P. Malacrida, I. E. L. Stephens, I. Chorkendorff, ChemElectroChem 2014, 1, 2075.
- 125S. Beyhan, N. E. Şahin, S. Pronier, J.-M. Léger, F. Kadırgan, Electrochim. Acta 2015, 151, 565.
- 126J. H. Bae, J.-H. Han, T. D. Chung, Phys. Chem. Chem. Phys. 2012, 14, 448.
- 127M. Etienne, A. Quach, D. Grosso, L. Nicole, C. Sanchez, A. Walcarius, Chem. Mater. 2007, 19, 844.
- 128A. Calvo, B. Yameen, F. J. Williams, G. J. A. A. Soler-Illia, O. Azzaroni, J. Am. Chem. Soc. 2009, 131, 10866.
- 129J. M. Lee, H. Han, S. Jin, S. M. Choi, H. J. Kim, M. H. Seo, W. B. Kim, Energy Technol. 2019, 7, 1900312.