Sequential Fractionation of Lignocellulosic Biomass Using CO2-Assisted Hydrolysis Combined with γ-Valerolactone Treatment
Qiaolong Zhai
Institute of Chemical Industry of Forest Products Key Laboratory of Biomass Energy and Material, Jiangsu Province, National Engineering Laboratory for Biomass Chemical Utilization, Chinese Academy of Forestry, Nanjing, 210042 China
Key and Open Laboratory on Forest Chemical Engineering,, SFA, Nanjing, 210042 China
Search for more papers by this authorChung-yun Hse
United States Department of Agriculture (USDA) Forest Service Southern Research Station, Pineville, LA, 71360 USA
Search for more papers by this authorFeng Long
Institute of Chemical Industry of Forest Products Key Laboratory of Biomass Energy and Material, Jiangsu Province, National Engineering Laboratory for Biomass Chemical Utilization, Chinese Academy of Forestry, Nanjing, 210042 China
Key and Open Laboratory on Forest Chemical Engineering,, SFA, Nanjing, 210042 China
Search for more papers by this authorFei Wang
Institute of Chemical Industry of Forest Products Key Laboratory of Biomass Energy and Material, Jiangsu Province, National Engineering Laboratory for Biomass Chemical Utilization, Chinese Academy of Forestry, Nanjing, 210042 China
Key and Open Laboratory on Forest Chemical Engineering,, SFA, Nanjing, 210042 China
Search for more papers by this authorTodd F. Shupe
Wood Science Consulting, LLC, Baton Rouge, LA, 70816 USA
Search for more papers by this authorCorresponding Author
Junming Xu
Institute of Chemical Industry of Forest Products Key Laboratory of Biomass Energy and Material, Jiangsu Province, National Engineering Laboratory for Biomass Chemical Utilization, Chinese Academy of Forestry, Nanjing, 210042 China
Key and Open Laboratory on Forest Chemical Engineering,, SFA, Nanjing, 210042 China
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037 China
Search for more papers by this authorQiaolong Zhai
Institute of Chemical Industry of Forest Products Key Laboratory of Biomass Energy and Material, Jiangsu Province, National Engineering Laboratory for Biomass Chemical Utilization, Chinese Academy of Forestry, Nanjing, 210042 China
Key and Open Laboratory on Forest Chemical Engineering,, SFA, Nanjing, 210042 China
Search for more papers by this authorChung-yun Hse
United States Department of Agriculture (USDA) Forest Service Southern Research Station, Pineville, LA, 71360 USA
Search for more papers by this authorFeng Long
Institute of Chemical Industry of Forest Products Key Laboratory of Biomass Energy and Material, Jiangsu Province, National Engineering Laboratory for Biomass Chemical Utilization, Chinese Academy of Forestry, Nanjing, 210042 China
Key and Open Laboratory on Forest Chemical Engineering,, SFA, Nanjing, 210042 China
Search for more papers by this authorFei Wang
Institute of Chemical Industry of Forest Products Key Laboratory of Biomass Energy and Material, Jiangsu Province, National Engineering Laboratory for Biomass Chemical Utilization, Chinese Academy of Forestry, Nanjing, 210042 China
Key and Open Laboratory on Forest Chemical Engineering,, SFA, Nanjing, 210042 China
Search for more papers by this authorTodd F. Shupe
Wood Science Consulting, LLC, Baton Rouge, LA, 70816 USA
Search for more papers by this authorCorresponding Author
Junming Xu
Institute of Chemical Industry of Forest Products Key Laboratory of Biomass Energy and Material, Jiangsu Province, National Engineering Laboratory for Biomass Chemical Utilization, Chinese Academy of Forestry, Nanjing, 210042 China
Key and Open Laboratory on Forest Chemical Engineering,, SFA, Nanjing, 210042 China
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037 China
Search for more papers by this authorAbstract
A biomass biorefinery strategy for the selective fractionation of poplar into its three main compositions (hemicellulose sugars, lignin, and high-purity cellulose) with a two-step process is developed. The first step consists of the selective hydrolysis of hemicellulose at mild conditions in a CO2/H2O system. This leads to various hemicellulose sugars and other intermediates in the water-soluble fraction, with more than 87.90% of the hemicellulose being extracted from the original poplar (180 °C, 2.0 MPa CO2, 10 min). The pretreated sample is subsequently used for extracting lignin in a γ-valerolactone (GVL)/H2O with acid catalysts for the next step. Meanwhile, four acid catalysts, including sulfuric acid and solid heteropoly acids (phosphomolybdic acid, silicotungstic acid, and phosphotungstic acid), are studied for the selective delignification in the GVL/H2O system, resulting in more than 91.35% of the original lignin being removed in the cellulose-rich substrates (140 °C, 30 mM silicotungstic acid, 3 h). Overall, the biorefinery approach fractions the poplar wood into three primary components: 1) various oligosaccharides, monosaccharides, and other intermediates derived from hemicellulose; 2) cellulose-rich substrate with a purity of cellulose as high as 90.76%, which has great potential as biochemicals or biomaterials; and 3) high-purity and proportion lignin recovered from biomass.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201900949-sup-0001-SuppData-S1.docx100 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Kumari, R. Singh, Renew. Sust. Energ. Rev. 2018, 90, 877.
- 2J. S. Luterbacher, A. Azarpira, A. H. Motagamwala, F. Lu, J. Ralph, J. A. Dumesic, Energy Environ. Sci. 2015, 8, 2657.
- 3S. C. Yat, A. Berger, D R. Shonnard, Bioresour. Technol. 2008, 99, 3855.
- 4C. Liu, H. Wang, A. M. Karim, J. Sun, Y. Wang, Chem. Soc. Rev. 2014, 43, 7594.
- 5D. Shen, W. Jin, J. Hu, R. Xiao, K. Luo, Renew. Sust. Energ. Rev. 2015, 51, 761.
- 6R. Li, B. Li, T. Yang, X. Kai, W. Wang, Y. Jie, Y. Zhang, G. Chen, Bioresour. Technol. 2015, 198, 94.
- 7S. Van den Bosch, W. Schutyser, R. Vanholme, T. Driessen, S.-F. Koelewijn, T. Renders, B. De Meester, W. J. J. Huijgen, W. Dehaen, C. M. Courtin, B. Lagrain, W. Boerjan, B. F. Sels, Energy Environ. Sci. 2015, 8, 1748.
- 8A. C. Ruthes, A. Martínez-Abad, H. T. Tan, V. Bulone, F. Vilaplana, Green Chem. 2017, 19, 1919.
- 9S. Yao, S. Nie, H. Zhu, S. Wang, X. Song, C. Qin, Ind. Crop. Prod. 2017, 96, 178.
- 10L. F. Ballesteros, J. A. Teixeira, S. I. Mussatto, Carbohyd. Polym. 2017, 157, 258.
- 11T. M. Santos, M. V. Alonso, M. Oliet, J. C. Domínguez, V. Rigual, F. Rodriguez, Carbohyd. Polym. 2018, 194, 285.
- 12J. S. Luterbacher, Q. Chew, Y. Li, J. W. Tester, L. P. Walker, Energy Environ. Sci. 2012, 5, 6990.
- 13A. R. C. Morais, M. D. D. J. Matuchaki, J. Andreaus, R. Bogel-Lukasik, Green Chem. 2016, 18, 2985.
- 14A. Toscan, A. R. C. Morais, S. M. Paixão, L. Alves, J. Andreaus, M. Camassola, A. J. P. Dillon, R. M. Lukasik, Bioresour. Technol. 2017, 224, 639.
- 15C. Li, X. Zhao, A. Wang, G. W. Huber, T. Zhang, Chem. Rev. 2015, 115, 11559.
- 16R. Rinaldi, R. Jastrzebski, M. T. Clough, J. Ralph, M. Kennema, P. C. A. Bruijnincx, B. M. Weckhuysen, Angew. Chem. Int. Ed. 2016, 55, 8164.
- 17T. Renders, S. Van den Bosch, S. F. Koelewijn, W. Schutyser, B. F. Sels, Energy Environ. Sci. 2017, 10, 1551.
- 18F. G. Calvo-Flores, J. A. Dobado, ChemSusChem 2010, 3, 1227.
- 19A. J. Ragauskas, G. T. Beckham, M. J. Biddy, R. Chandra, F. Chen, M. F. Davis, B. H. Davison, R. A. Dixon, P. Gilna, M. Keller, P. Langan, A. K. Naskar, J. N. Saddler, T. J. Tschaplinski, G. A. Tuskan, C. E. Wyman, Science 2014, 344, 1246843.
- 20Z. Strassberger, P. Prinsen, F. van der Klis, D. S. van Es, S. Tanase, G. Rothenberg, Green Chem. 2015, 17, 325.
- 21L. da Costa Sousa, M. Jin, S. P. S. Chundawat, V. Bokade, X. Tang, A. Azarpira, F. Lu, U. Avci, J. Humpula, N. Uppugundla, C. Gunawan, S. Pattathil, A. M. Cheh, N. Kothari, R. Kumar, J. Ralph, M. G. Hahn, C. E. Wyman, S. Singh, B. A. Simmons, B. E. Dale, V. Balan, Energy Environ. Sci. 2016, 9, 1215.
- 22A. Brandt-Talbot, F. J. Gschwend, P. S. Fennell, T. M. Lammens, B. Tan, J. Weale, J. P. Hallett, Green Chem. 2017, 19, 3078.
- 23J. Yang, X. Lu, X. Liu, J. Xu, Q. Zhou, S. Zhang, Green Chem. 2017, 19, 2234.
- 24N. Sathitsuksanoh, K. M. Holtman, D. J. Yelle, T. Morgan, V. Stavila, J. Pelton, H. Blanch, B. A. Simmons, A. George, Green Chem. 2014, 16, 1236.
- 25I. Cybulska, G. P. Brudecki, J. Zembrzuska, J. E. Schmidt, C. G-B. Lopez, M. H. Thomsen, Appl. Energy 2017, 185, 1040.
- 26Y. Li, Y. Liu, W. Chen, Q.. Wang, Y. Liu, J. Li, H. Yu, Green Chem. 2016, 18, 1010.
- 27L. Hu, Y. Luo, B. Cai, J. Li, D. Tong, C. Hu, Green Chem. 2014, 16, 3107.
- 28J. S. Luterbacher, J. M. Rand, D. M. Alonso, J. Han, J. T. Youngquist, C. T. Maravelias, B. F. Pfleger, J. A. Dumesic, Science 2014, 343, 277.
- 29D. M. Alonso, S. H. Hakim, S. Zhou, W. Won, O. Hosseinaei, J. Tao, V. Garcia-Negron, A. H. Motagamwala, M. A. Mellmer, K. Huang, C. J. Houtman, N. Labbé, D. P. Harper, C. Maravelias, T. Runge, J. A. Dumesic, Sci. Adv. 2017, 3, e1603301.
- 30J. S. Luterbacher, A. Azarpira, A. H. Motagamwala, F. Lu, J. Ralph, J. A. Dumesic, Energy Environ. Sci. 2015, 8, 2657.
- 31W. Schutyser, T. Renders, S. Van den Bosch, S.-F. Koelewijn, G. T. Beckham, B. F. Sels, Chem. Soc. Rev. 2018, 47, 852.
- 32D. Y. Zhang, M. H. Duan, X. H. Yao, Y.-J. Fu, Y.-G. Zu, Fuel 2016, 172, 293.
- 33Z. Jiang, J. Yi, J. Li, T. He, C. Hu, ChemSusChem 2015, 8, 1901.
- 34P. Robert, M. Marquis, C. Barron, F. Guillon, L. Saulnier, J. Agr. Food Chem. 2005, 53, 7014.
- 35B. Scholze, D. Meier, J. Anal. Appl. Pyrol. 2001, 60, 41.
- 36I. Santoni, E. Callone, A. Sandak, J. Sandak, S. Dirè, Carbohyd. Polym. 2015, 117, 710.
- 37J. Yang, X. Lu, X. Liu, J. Xu, Q. Zhou, S. Zhang, Green Chem. 2017, 19, 2234.
- 38M. Bardet, G. Gerbaud, M. Giffard, C. Doan, S. Hediger, L. Le Pape, Prog. Nucl. Mag. Res. Sp. 2009, 3, 199.
- 39S. S. Idris, N. A. Rahman, K. Ismail, A. B. Alias, Z. A. Rashid, Md. J. Aris, Bioresour. Technol. 2010, 101, 4584.
- 40E. Biagini, F. Barontini, L. Tognotti, Ind. Eng. Chem. Res. 2006, 45, 4486.
- 41Y. J. Li, H. Y. Li, X. F. Cao, S.-N. Sun, R.-C. Sun, ACS Sustain. Chem. Eng. 2018, 6, 12124.
- 42a) A. Bohre, S. Dutta, B. Saha, M. M. Abu-Omar, ACS Sustain. Chem. Eng. 2015, 3, 1263. b) A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical Procedures (LAP)., National Renewable Energy Laboratory, Golden, CO 2012, pp. 1–15, Revised version 2011.
- 43a) D. Song, S. An, Y. Sun, Y. Guo, J. Catal. 2016, 333, 184. b) L. Segal, J. J. Creely, A. E. Martin Jr, C.M. Conrad, Text Res. J. 1959, 29, 786.