Trade-Off between Exciton Dissociation and Carrier Recombination and Dielectric Properties in Y6-Sensitized Nonfullerene Ternary Organic Solar Cells
Corresponding Author
Leiping Duan
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorYu Zhang
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorHaimang Yi
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorFaiazul Haque
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorRong Deng
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorHuilan Guan
College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorCorresponding Author
Yingping Zou
College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorCorresponding Author
Ashraf Uddin
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorCorresponding Author
Leiping Duan
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorYu Zhang
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorHaimang Yi
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorFaiazul Haque
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorRong Deng
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorHuilan Guan
College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorCorresponding Author
Yingping Zou
College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorCorresponding Author
Ashraf Uddin
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorAbstract
Organic photovoltaics (OPVs) have emerged as a promising renewable energy generation technology in past decades. However, the deep understanding of the details in exciton dissociation and carrier recombination in ternary organic solar cells (OSCs) is still lacking. Herein, a novel ternary OSC based on a PTB7-Th:Y6:ITIC blend with a power conversion efficiency (PCE) enhancement of 29% is reported. A trade-off is surprisingly found to exist between the exciton dissociation and carrier recombination process. The addition of nonfullerene acceptor Y6 in the ternary blend is found to create an efficient exciton dissociation process but accelerates the free carrier recombination process. Dielectric properties are also studied for ternary OSCs. The addition of Y6 into the binary blend is found to tune down the dielectric constant of the active layer and as a result accelerates the carrier recombination. The best performance is obtained for PTB7-Th:Y6(5 wt%):ITIC(95 wt%)-based ternary devices. In addition to its balanced charge carrier mobility and efficient charge extraction process, PTB7-Th:Y6(5 wt%):ITIC(95 wt%)-based ternary devices reach a balance in the trade-off between the exciton dissociation and carrier recombination process and thus achieve the highest short-circuit current density (Jsc) value.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201900924-sup-0001-SuppData-S1.docx436.8 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Duan, N. K. Elumalai, Y. Zhang, A. Uddin, Sol. Energy Mater. Sol. Cells 2019, 193, 22.
- 2L. Duan, H. Yi, Z. Wang, Y. Zhang, F. Haque, B. Sang, R. Deng, A. Uddin, Sustain. Energy Fuels 2019, 3, 2456.
- 3M. C. Scharber, N. S. Sariciftci, Prog. Polym. Sci. 2013, 38, 1929.
- 4P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, D. E. Markov, Adv. Mater. 2007, 19, 1551.
- 5S. A. Hawks, F. Deledalle, J. Yao, D. G. Rebois, G. Li, J. Nelson, Y. Yang, T. Kirchartz, J. R. Durrant, Adv. Energy Mater. 2013, 3, 1201.
- 6D. M. Stoltzfus, J. E. Donaghey, A. Armin, P. E. Shaw, P. L. Burn, P. Meredith, Chem. Rev. 2016, 116, 12920.
- 7L. Duan, H. Yi, C. Xu, M. B. Upama, M. A. Mahmud, D. Wang, F. H. Shabab, A. Uddin, IEEE J. Photovoltaics 2018, 8, 1701.
- 8L. Duan, X. Meng, Y. Zhang, H. Yi, K. Jin, F. Haque, C. Xu, Z. Xiao, L. Ding, A. Uddin, Mater. Chem. Front. 2019, 3, 1085.
- 9L. Duan, C. Xu, H. Yi, M. B. Upama, M. A. Mahmud, D. Wang, F. Haque, A. Uddin, IEEE J. Photovoltaics 2019, 9, 1031.
- 10X. Song, N. Gasparini, M. M. Nahid, S. H. K. Paleti, C. Li, W. Li, H. Ade, D. Baran, Adv. Funct. Mater. 2019, 29, 1902441.
- 11C. Xu, M. Wright, D. Ping, H. Yi, X. Zhang, M. D. A. Mahmud, K. Sun, M. B. Upama, F. Haque, A. Uddin, Org. Electron. 2018, 62, 261.
- 12C. Yao, Y. Yang, L. Li, M. Bo, C. Peng, J. Wang, J. Mater. Chem. A 2019, https://doi.org/10.1039/C9TA04084F.
- 13L. Zhang, N. Yi, W. Zhou, Z. Yu, F. Liu, Y. Chen, Adv. Sci. 2019, 6, 1900565.
10.1002/advs.201900565 Google Scholar
- 14Q. An, X. Ma, J. Gao, F. Zhang, Sci. Bull. 2019, 64, 504.
- 15L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, Y. Chen, Science 2018, 361, 1094.
- 16N. Gasparini, A. Salleo, I. McCulloch, D. Baran, Nat. Rev. Mater. 2019, 4, 229.
- 17G. Lakhotiya, N. Belsare, S. Arbuj, B. Kale, A. Rana, RSC Adv. 2019, 9, 7457.
- 18M. Nam, J. Yoo, Y. Park, H. Y. Noh, Y. Park, J. Cho, J.-A. Kim, J. Kim, H. H. Lee, R. Chang, D.-H. Ko, J. Mater. Chem. A 2019, 7, 9698.
- 19K. Weng, C. Li, P. Bi, H. S. Ryu, Y. Guo, X. Hao, D. Zhao, W. Li, H. Y. Woo, Y. Sun, J. Mater. Chem. A 2019, 7, 3552.
- 20P. Xia, M. Wu, S. Zhang, J. Hu, L. Chen, T. Bu, J. Yi, D. Wu, J. Xia, Org. Electron. 2019, 73, 205.
- 21Y. Zhu, A. Gadisa, Z. Peng, M. Ghasemi, L. Ye, Z. Xu, S. Zhao, H. Ade, Adv. Energy Mater. 2019, 9, 1900376.
- 22R. Lin, M. Wright, B. Puthen Veettil, A. Uddin, Synth. Met. 2014, 192, 113.
- 23R. Xue, J. Zhang, Y. Li, Y. Li, Small 2018, 14, 1801793.
- 24W. Huang, P. Cheng, Y. Yang, G. Li, Y. Yang, Adv. Mater. 2018, 30, 1705706.
- 25W. Xu, F. Gao, Mater. Horiz. 2018, 5, 206.
- 26R. Yu, S. Zhang, H. Yao, B. Guo, S. Li, H. Zhang, M. Zhang, J. Hou, Adv. Mater. 2017, 29, 1700437.
- 27G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, H. Yan, Chem. Rev. 2018, 118, 3447.
- 28J. Zhang, Y. Zhang, J. Fang, K. Lu, Z. Wang, W. Ma, Z. Wei, J. Am. Chem. Soc. 2015, 137, 8176.
- 29J. Brebels, J. V. Manca, L. Lutsen, D. Vanderzande, W. Maes, J. Mater. Chem. A 2017, 5, 24037.
- 30X. Liu, B. Xie, C. Duan, Z. Wang, B. Fan, K. Zhang, B. Lin, F. J. M. Colberts, W. Ma, R. A. J. Janssen, F. Huang, Y. Cao, J. Mater. Chem. A 2018, 6, 395.
- 31J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 2019, 3, 1140.
- 32D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, M.Zakeeruddin Shaik, X. Li, A. Hagfeldt, M. Grätzel, Nat. Energy 2016, 1, 16142.
- 33P.-W. Liang, C.-Y. Liao, C.-C. Chueh, F. Zuo, S. T. Williams, X.-K. Xin, J. Lin, A. K.-Y. Jen, Adv. Mater. 2014, 26, 3748.
- 34B. R. Masters, J. Biomed. Opt. 2008, 13, 9901.
- 35A. A. Mohapatra, V. Kim, B. Puttaraju, A. Sadhanala, X. Jiao, C. R. McNeill, R. H. Friend, S. Patil, ACS Appl. Energy Mater. 2018, 1, 4874.
- 36M. Zhang, Z. Xiao, W. Gao, Q. Liu, K. Jin, W. Wang, Y. Mi, Q. An, X. Ma, X. Liu, C. Yang, L. Ding, F. Zhang, Adv. Energy Mater. 2018, 8, 1801968.
- 37M. Zhang, F. Zhang, Q. An, Q. Sun, W. Wang, J. Zhang, W. Tang, Nano Energy 2016, 22, 241.
- 38B. Arredondo, B. Romero, G. Del Pozo, M. Sessler, C. Veit, U. Würfel, Sol. Energy Mater. Sol. Cells 2014, 128, 351.
- 39S. Holliday, R. S. Ashraf, A. Wadsworth, D. Baran, S. A. Yousaf, C. B. Nielsen, C.-H. Tan, S. D. Dimitrov, Z. Shang, N. Gasparini, M. Alamoudi, F. Laquai, C. J. Brabec, A. Salleo, J. R. Durrant, I. McCulloch, Nat. Commun. 2016, 7, 11585.
- 40D. Abou-Ras, S. S. Schmidt, N. Schäfer, J. Kavalakkatt, T. Rissom, T. Unold, R. Mainz, A. Weber, T. Kirchartz, E. Simsek Sanli, P. A. van Aken, Q. M. Ramasse, H.-J. Kleebe, D. Azulay, I. Balberg, O. Millo, O. Cojocaru-Mirédin, D. Barragan-Yani, K. Albe, J. Haarstrich, C. Ronning, Phys. Status Solidi RRL 2016, 10, 363.
- 41M. B. Upama, N. K. Elumalai, M. A. Mahmud, M. Wright, D. Wang, C. Xu, F. Haque, K. H. Chan, A. Uddin, Appl. Surf. Sci. 2017, 416, 834.
- 42S. L. M. van Mensfoort, R. Coehoorn, Phys. Rev. Lett. 2008, 100, 086802.
- 43L. Duan, H. Yi, Y. Zhang, F. Haque, C. Xu, A. Uddin, Sustain. Energy Fuels 2019, 3, 723.
- 44W. Chen, T. Xu, F. He, W. Wang, C. Wang, J. Strzalka, Y. Liu, J. Wen, D. J. Miller, J. Chen, K. Hong, L. Yu, S. B. Darling, Nano Lett. 2011, 11, 3707.
- 45H.-C. Liao, C.-C. Ho, C.-Y. Chang, M.-H. Jao, S. B. Darling, W.-F. Su, Mater. Today 2013, 16, 326.
- 46F. Piersimoni, D. Cheyns, K. Vandewal, J. V. Manca, B. P. Rand, J. Phys. Chem. Lett. 2012, 3, 2064.
- 47J. Bisquert, G. Garcia-Belmonte, J. Phys. Chem. Lett. 2011, 2, 1950.
- 48G. Garcia-Belmonte, A. Guerrero, J. Bisquert, J. Phys. Chem. Lett. 2013, 4, 877.
- 49F. Haque, M. Wright, M. A. Mahmud, H. Yi, D. Wang, L. Duan, C. Xu, M. B. Upama, A. Uddin, ACS Omega 2018, 3, 11937.
- 50F. Haque, H. Yi, L. Duan, Y. Zhang, M. Wright, G. Conibeer, A. Uddin, Mater. Sci. Semicond. Process. 2019, 102, 104580.
- 51D. Wang, N. K. Elumalai, M. A. Mahmud, H. Yi, M. B. Upama, R. A. Lee Chin, G. Conibeer, C. Xu, F. Haque, L. Duan, A. Uddin, Synth. Met. 2018, 246, 195.
- 52H. Yi, D. Wang, M. A. Mahmud, F. Haque, M. B. Upama, C. Xu, L. Duan, A. Uddin, ACS Appl. Energy Mater. 2018, 1, 6027.
- 53G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Org. Electron. 2008, 9, 847.
- 54A. Aprilia, P. Wulandari, V. Suendo, Herman, R. Hidayat, A. Fujii, M. Ozaki, Sol. Energy Mater. Sol. Cells 2013, 111, 181.
- 55G. Perrier, R. de Bettignies, S. Berson, N. Lemaître, S. Guillerez, Sol. Energy Mater. Sol. Cells 2012, 101, 210.
- 56B. Arredondo, M. B. Martín-López, B. Romero, R. Vergaz, P. Romero-Gomez, J. Martorell, Sol. Energy Mater. Sol. Cells 2016, 144, 422.
- 57M. B. Upama, N. K. Elumalai, M. A. Mahmud, M. Wright, D. Wang, C. Xu, A. Uddin, Sol. Energy Mater. Sol. Cells 2018, 176, 109.
- 58T. Schiros, G. Kladnik, D. Prezzi, A. Ferretti, G. Olivieri, A. Cossaro, L. Floreano, A. Verdini, C. Schenck, M. Cox, A. A. Gorodetsky, K. Plunkett, D. Delongchamp, C. Nuckolls, A. Morgante, D. Cvetko, I. Kymissis, Adv. Energy Mater. 2013, 3, 894.
- 59C. Zhan, X. Zhang, J. Yao, RSC Adv. 2015, 5, 93002.
- 60R. A. Street, Appl. Phys. Lett. 2008, 93, 133308.
- 61S. N. Hood, I. Kassal, J. Phys. Chem. Lett. 2016, 7, 4495.
- 62G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344.
- 63S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, J. Appl. Phys. 2010, 108, 124509.
- 64C. M. Proctor, M. Kuik, T.-Q. Nguyen, Prog. Polym. Sci. 2013, 38, 1941.
- 65Z. Hu, J. Wang, Z. Wang, W. Gao, Q. An, M. Zhang, X. Ma, J. Wang, J. Miao, C. Yang, F. Zhang, Nano Energy 2019, 55, 424.
- 66X. Ma, W. Gao, J. Yu, Q. An, M. Zhang, Z. Hu, J. Wang, W. Tang, C. Yang, F. Zhang, Energy Environ. Sci. 2018, 11, 2134.
- 67X. Ma, M. Luo, W. Gao, J. Yuan, Q. An, M. Zhang, Z. Hu, J. Gao, J. Wang, Y. Zou, C. Yang, F. Zhang, J. Mater. Chem. A 2019, 7, 7843.
- 68Z. Ma, E. Wang, K. Vandewal, M. R. Andersson, F. Zhang, Appl. Phys. Lett. 2011, 99, 143302.
- 69E. Zhou, J. Cong, K. Hashimoto, K. Tajima, Adv. Mater. 2013, 25, 6991.
- 70X. Du, X. Lu, J. Zhao, Y. Zhang, X. Li, H. Lin, C. Zheng, S. Tao, Adv. Funct. Mater. 2019, 29, 1902078.