A Simple Glucose-Blowing Approach to Graphene-Like Foam/NiO Composites for Asymmetric Supercapacitors
Chengen He
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074 China
Search for more papers by this authorYulin Jiang
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074 China
Search for more papers by this authorXiaofang Zhang
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074 China
Search for more papers by this authorXun Cui
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Yingkui Yang
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074 China
Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074 China
Search for more papers by this authorChengen He
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074 China
Search for more papers by this authorYulin Jiang
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074 China
Search for more papers by this authorXiaofang Zhang
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074 China
Search for more papers by this authorXun Cui
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Yingkui Yang
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074 China
Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074 China
Search for more papers by this authorAbstract
The glucose-blowing approach is facile and efficient in producing graphene-like materials with large specific surface area, good conductivity, and yet low cost. Herein, a graphene-like foam/NiO (GLF/NiO) composite is synthesized by a one-step glucose-blowing method at a relatively low carbonization temperature of 650 °C with the assistance of Ni(NO3)2. Especially, Ni(NO3)2 is used as a blowing agent of glucose and also a precursor of NiO. The resulting GLF/NiO composite exhibits an interconnected foam-like structure with a large specific surface area (323 m2 g−1). The as-fabricated supercapacitor electrode delivers a specific capacitance as high as 539 F g−1 at 1 A g−1, which is much higher than that of neat GLF (147 F g−1) using NH4Cl as the blow agent in the absence of Ni(NO3)2. The asymmetric supercapacitor is further assembled using GLF/NiO as the positive electrode and GLF as the negative electrode, respectively. The cell shows a high specific capacitance up to 152 F g−1 and an energy density of 47.6 W h kg−1 at the power density of 750 W kg−1. Herein, an appealing approach to the facile fabrication of carbon-based oxide nanocomposites for high-performance electrochemical energy storage is proposed.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201900923-sup-0001-SuppData-S1.docx362.9 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Nguyen, M. D. Montemor, Adv. Sci. 2019, 6, 1801797.
- 2Y. Zhao, L. Ma, Y. Zhu, P. Qin, H. Li, F. Mo, D. Wang, G. Liang, Q. Yang, W. Liu, C. Zhi, ACS Nano 2019, 13, 7270.
- 3Y. L. Shao, M. F. El-Kady, J. Y. Sun, Y. G. Li, Q. H. Zhang, M. F. Zhu, H. Z. Wang, B. Dunn, R. B. Kaner, Chem. Rev. 2018, 118, 9233.
- 4C. Wang, J. Xu, M. F. Yuen, J. Zhang, Y. Li, X. Chen, W. Zhang, Adv. Funct. Mater. 2014, 24, 6372.
- 5X. N. Zang, C. W. Shen, M. Sanghadasa, L. W. Lin, ChemElectroChem 2019, 6, 976.
- 6J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Adv. Funct. Mater. 2012, 22, 2632.
- 7J. Yan, Q. Wang, T. Wei, Z. Fan, Adv. Energy Mater. 2014, 4, 1300816.
- 8Y. Yang, C. Han, B. Jiang, J. Iocozzia, C. He, D. Shi, T. Jiang, Z. Lin, Mater. Sci. Eng. R 2016, 102, 1.
- 9B. Zhao, J. Song, P. Liu, W. Xu, T. Fang, Z. Jiao, H. Zhang, Y. Jiang, J. Mater. Chem. 2011, 21, 18792.
- 10Y. S. Liu, C. Gao, Q. Li, H. Pang, Chemistry 2019, 25, 2141.
- 11K. Chen, L. R. Shi, Y. F. Zhang, Z. F. Liu, Chem. Soc. Rev. 2018, 47, 3018.
- 12X. Wang, Y. Zhang, C. Zhi, X. Wang, D. Tang, Y. Xu, Q. Weng, X. Jiang, M. Mitome, D. Golberg, Y. Bando, Nat. Commun. 2013, 4, 2905.
- 13X. F. Jiang, X. B. Wang, P. C. Dai, X. Li, Q. H. Weng, X. Wang, D. M. Tang, J. Tang, Y. Bando, D. Golberg, Nano Energy 2015, 16, 81.
- 14B. B. Chang, H. Yin, X. F. Zhang, S. R. Zhang, B. C. Yang, Chem. Eng. J. 2017, 312, 191.
- 15H. Lei, T. Yan, H. Wang, L. Shi, J. Zhang, D. Zhang, J. Mater. Chem. A 2015, 3, 5934.
- 16L. Liu, H. Wang, Z. Zhou, G. He, X. Sun, Q. Chen, H. Chen, RSC Adv. 2015, 5, 74463.
- 17F. M. Han, O. Qian, B. Chen, H. B. Tang, M. L. Wang, J. Alloys Compd. 2018, 730, 386.
- 18M. Choucair, P. Thordarson, J. A. Stride, Nat. Nanotechnol. 2009, 4, 30.
- 19Y. Jiang, D. D. Chen, J. S. Song, Z. Jiao, Q. L. Ma, H. J. Zhang, L. L. Cheng, B. Zhao, Y. L. Chu, Electrochim. Acta 2013, 91, 173.
- 20W. Yu, B. Q. Li, S. J. Ding, Nanotechnology 2016, 27, 075605.
- 21Y. Feng, B. Wang, X. Li, Y. Ye, J. Ma, C. Liu, X. Zhou, X. Xie, Carbon 2019, 146, 650.
- 22C. He, S. Qiu, H. Peng, Q. Zhang, X. Han, Y. Yang, D. Shi, X. Xie, Compos. Sci. Technol. 2018, 167, 155.
- 23M. L. Zhou, H. Chai, D. Z. Jia, W. Y. Zhou, New J. Chem. 2014, 38, 2320.
- 24G. Lin, Y. Jiang, C. He, Z. Huang, X. Zhang, Y. Yang, Dalton. Trans. 2019, 48, 5773.
- 25S. N. Talapaneni, J. H. Lee, S. H. Je, O. Buyukcakir, T.-W. Kwon, K. Polychronopoulou, J. W. Choi, A. Coskun, Adv. Funct. Mater. 2017, 27, 1604658.
- 26M. A. Peck, M. A. Langell, Chem. Mater. 2012, 24, 4483.
- 27X. Li, Y. Fang, L. Wen, F. Li, G. Yin, W. Chen, X. An, J. Jin, J. Ma, Dalton. Trans. 2016, 45, 5575.
- 28X. Zhang, H. Li, W. Zhang, Z. Huang, C. P. Tsui, C. Lu, C. He, Y. Yang, Electrochim. Acta 2019, 301, 55.
- 29M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanoscale 2013, 5, 72.
- 30C. Yuan, L. Zhang, L. Hou, G. Pang, W. Oh, RSC Adv. 2014, 4, 14408.
- 31X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu, X. Zhao, Chem. Eur. J. 2011, 17, 10898.
- 32B. Zhao, H. Zhuang, T. Fang, Z. Jiao, R. Z. Liu, X. T. Ling, B. Lu, Y. Jiang, J. Alloys Compd. 2014, 597, 291.
- 33Y. G. Zhu, G. S. Cao, C. Y. Sun, J. Xie, S. Y. Liu, T. J. Zhu, X. B. Zhao, H. Y. Yang, RSC Adv. 2013, 3, 19409.
- 34S. I. Kim, J. S. Lee, H. J. Ahn, H. K. Song, J. H. Jang, ACS Appl. Mater. Interfaces 2013, 5, 1596.
- 35C. He, Z. Liu, H. Peng, Y. Yang, D. Shi, X. Xie, Electrochim. Acta 2016, 222, 1393.
- 36N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Adv. Mater. 2017, 29, 1605336.
- 37J. Ji, L. L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R. S. Ruoff, ACS Nano 2013, 7, 6237.
- 38Z. H. Qiu, D. W. He, Y. S. Wang, H. L. Wu, J. Y. Li, J. Alloys Compd. 2017, 727, 1189.
- 39Z. B. Fang, S. U. Rehman, M. Z. Sun, Y. P. Yuan, S. W. Jin, H. Bi, J. Mater. Chem. A 2018, 6, 21131.
- 40Z. H. Qiu, D. W. He, Y. S. Wang, X. Zhao, W. Zhao, H. L. Wu, RSC Adv. 2017, 7, 7843.
- 41L. Ma, G. Sun, J. Ran, S. Lv, X. Shen, H. Tong, ACS Appl. Mater. Interfaces 2018, 10, 22278.
- 42H. W. Lai, Q. Wu, J. Zhao, L. M. Shang, H. Li, R. C. Che, Z. Y. Lyu, J. F. Xiong, L. J. Yang, X. Z. Wang, Z. Hu, Energy Environ. Sci. 2016, 9, 2053.
- 43H. Yi, H. W. Wang, Y. T. Jing, T. Q. Peng, X. F. Wang, J. Power Sources 2015, 285, 281.
- 44X. C. Ren, C. L. Guo, L. Q. Xu, T. T. Li, L. F. Hou, Y. H. Wei, ACS Appl. Mater. Interfaces 2015, 7, 19930.
- 45C. He, S. Qiu, S. Sun, Q. Zhang, G. Lin, S. Lei, X. Han, Y. Yang, Energy Environ. Mater. 2018, 1, 88.
- 46Z. Liu, G. Liang, Y. Zhan, H. Li, Z. Wang, L. Ma, Y. Wang, X. Niu, C. Zhi, Nano Energy 2019, 58, 732.
- 47Q. Yang, Z. Huang, X. Li, Z. Liu, H. Li, G. Liang, D. Wang, Q. Huang, S. Zhang, S. Chen, C. Zhi, ACS Nano 2019, 13, 8275.